Hydrogen sulfide (H2S) is toxic at high concentrations but beneficial at low, eliciting profound effects on physiological functions ranging from cardioprotection to hippocampal long-term potentiation, to protection against intestinal inflammation. Its toxicity is averted by the robust activity of a mitochondrial sulfide oxidation pathway, which feeds into the electron transfer chain, linking H2S to energy metabolism. H2S is the product of three enzymes in the sulfur network of which two, cystathionine ?-synthase (CBS) and ?-cystathionase (CSE), reside in the cytoplasmic transsulfuration pathway while the third, mercaptopyruvate sulfurtransferase (MST), is involved in cysteine catabolism and is primarily mitochondrial in location. Studies in our laboratory have provided detailed insights into the kinetic and chemical mechanisms of the human enzymes revealing a suprising laxity in substrate and reaction specificity particularly for CBS and CSE. Together, the transsulfuration enzymes catalyze at least eight H2S generating reactions in addition to the two canonical cysteine producing reactions, raising the obvious question of how substrate and reaction choices are regulated in a cellular milieu. In the next cycle, we propose to elucidate fundamental mechanisms of regulation of H2S synthesis in normal and disease states by addressing the following specific aims: (i) Elucidate allosteric regulation in CBS, which we have recently discovered uses a unique mechanism via its heme cofactor, to regulate the choice of substrate for CSE, the next enzyme in the pathway. For this, we will exploit an enigmatic set of pathogenic CBS mutations that retain normal activity but exhibit faulty allosteric regulation that is exerted over 50 of protein terrain. (ii) Elucidate regulation of H2S synthesis by CSE in the context of angiogenesis in which NO and CO play a role, and which we can now connect to CSE via the NO and CO-sensistive heme- regulated switch in CBS. We will also develop CSE inhibitors by optimizing lead compounds that show specificity towards CSE, the major H2S producer in the peripheral system. (iii) We will elucidate the role of MST in proliferation and cellular bioenergetics, building on our unpublished studies, which reveal significant up- regulation of MST in colon cancer. We will also assess the impact of MST on H2S signaling using a newly developed, sensitive, and specific persulfide tagging method for proteomic analysis. The impact of our proposed studies will be both fundamental (i.e. elucidating mechanims of allosteric regulation at the level of individual enzymes and in the pathway), and medical (i.e. understanding the biochemical basis of failure of disease-causing CBS mutations, developing CSE inhibitors with therapeutic potential and identifying changes in the persulfide proteome in colon cancer associated with metabolic reprogramming).

Public Health Relevance

Hydrogen sulfide (H2S) is both a noxious gas in the environment and a signaling molecule that is made by three human enzymes, which when affected by autosomal recessive mutations, lead to rare/orphan diseases. Our studies on these enzymes will illuminate: (i) how H2S production is regulated within the sulfur network to render it responsive to cellular needs and to two other signaling molecules, CO and NO, and (ii) how this regulation is corrupted in disease states and impacts signaling via the protein persulfide modification.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
2R01HL058984-18
Application #
9339793
Study Section
Macromolecular Structure and Function A Study Section (MSFA)
Program Officer
Srinivas, Pothur R
Project Start
1997-08-01
Project End
2021-05-31
Budget Start
2017-06-01
Budget End
2018-05-31
Support Year
18
Fiscal Year
2017
Total Cost
$387,500
Indirect Cost
$137,500
Name
University of Michigan Ann Arbor
Department
Biochemistry
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Ghosh, Amiya Kumar; Mau, Theresa; O'Brien, Martin et al. (2018) Novel role of autophagy-associated Pik3c3 gene in gonadal white adipose tissue browning in aged C57/Bl6 male mice. Aging (Albany NY) 10:764-774
Filipovic, Milos R; Zivanovic, Jasmina; Alvarez, Beatriz et al. (2018) Chemical Biology of H2S Signaling through Persulfidation. Chem Rev 118:1253-1337
Mau, Theresa; Yung, Raymond (2018) Adipose tissue inflammation in aging. Exp Gerontol 105:27-31
Banerjee, Ruma (2018) Introduction to the Thematic Minireview Series: Redox metabolism and signaling. J Biol Chem 293:7488-7489
Yadav, Vinita; Gao, Xing-Huang; Willard, Belinda et al. (2017) Hydrogen sulfide modulates eukaryotic translation initiation factor 2? (eIF2?) phosphorylation status in the integrated stress-response pathway. J Biol Chem 292:13143-13153
Banerjee, Ruma (2017) Catalytic promiscuity and heme-dependent redox regulation of H2S synthesis. Curr Opin Chem Biol 37:115-121
Trexel, Julie; Yoon, Gi S; Keswani, Rahul K et al. (2017) Macrophage-Mediated Clofazimine Sequestration Is Accompanied by a Shift in Host Energy Metabolism. J Pharm Sci 106:1162-1174
Banerjee, Ruma (2017) Introduction to the Thematic Minireview Series: Redox metabolism and signaling. J Biol Chem 292:16802-16803
Banerjee, Ruma (2017) Introduction to the Thematic Minireview Series: Host-microbiome metabolic interplay. J Biol Chem 292:8544-8545
Ghosh, Amiya Kumar; Mau, Theresa; O'Brien, Martin et al. (2016) Impaired autophagy activity is linked to elevated ER-stress and inflammation in aging adipose tissue. Aging (Albany NY) 8:2525-2537

Showing the most recent 10 out of 92 publications