In this grant proposal we seek to characterize how BMPER, an extracellular regulator of the BMP signaling pathway, influences the biology and function of endothelial cells. Understanding the biology of endothelial cells and the signaling pathways they use in order to orchestrate their pleiotropy of function is of critical importance given the vast array of cardiovascular, circulatory and blood diseases that result from the dysfunction of the vascular endothelium. Work in our laboratory and others has revealed that BMPER, through it's mediation of BMP signaling events, is critically involved in numerous aspects of endothelial cell biology that impinge on and affect vascular development in the embryo and the success of revascularization in mature tissues. Defining the mechanism behind BMPER's ability to affect these processes, however, has been complicated due to the unusual ability of BMPER to both promote and inhibit BMP activity in a context-dependent manner. Recently, we have discovered that BMPER modulates BMP4 activity via a concentration-dependent, endocytic trap-and- sink mechanism, with low levels of BMPER promoting and high levels inhibiting BMP4 signaling, thereby accounting for the biphasic nature of BMPER's regulation of BMP4 activity. Furthermore, we found that the differential recruitment of receptor complex proteins, determined by the concentration ratio of BMPER to BMP4, predisposes the BMPER/BMP4 signaling complex to be sorted by intracellular compartments that result in either the enhancement or inhibition of BMP activation. Here we propose to build on these findings by using a novel and highly integrated approach in which vascular events at the molecular, transcriptional, and genetic level will be related to pathologically and therapeutically relevant processes within the endothelial compartment. Specifically, we propose to: 1). Understand the broad biochemical regulation of BMPER activity in endothelial cells;2). Elucidate the role of BMPER in the regulation of signaling events necessary for endothelial cell migration;and 3). Determine the role of BMPER-mediated signaling during coronary angiogenesis, a process that until now, has not been explored in terms of BMPER/BMP signaling but which our preliminary data demonstrate is reliant on BMPER.
The aims of this grant are a logical extension of work done in the previous cycle. We anticipate that this approach, while challenging in its scope, will allow the individual parts of the project to be synergistic without being interdependent on one another for completion, should problems arise in one area.

Public Health Relevance

Understanding the biology of key components of the cardiovascular system, such as the endothelial cells we focus on in this proposal, is necessary and essential for both determining the causes of cardiovascular diseases and for developing safe and specific therapies. The BMPER/BMP signaling pathway has been implicated in embryonic development, adult vascular regeneration and in tumor biology. The results of the experiments outlined in this proposal have the potential to directly impact public health by identifying viable therapeutic options to treat a wide range of cardiovascular conditions.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Vascular Cell and Molecular Biology Study Section (VCMB)
Program Officer
Gao, Yunling
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Internal Medicine/Medicine
Schools of Medicine
Chapel Hill
United States
Zip Code
Dyer, Laura A; Wu, Yaxu; Patterson, Cam (2014) Protein isolation from the developing embryonic mouse heart valve region. J Vis Exp :51911
Townley-Tilson, W H Davin; Wu, Yaxu; Ferguson 3rd, James E et al. (2014) The ubiquitin ligase ASB4 promotes trophoblast differentiation through the degradation of ID2. PLoS One 9:e89451
Dyer, Laura A; Pi, Xinchun; Patterson, Cam (2014) The role of BMPs in endothelial cell function and dysfunction. Trends Endocrinol Metab 25:472-80
Pi, Xinchun; Xie, Liang; Portbury, Andrea L et al. (2014) NADPH oxidase-generated reactive oxygen species are required for stromal cell-derived factor-1?-stimulated angiogenesis. Arterioscler Thromb Vasc Biol 34:2023-32
Dyer, Laura; Wu, Yaxu; Moser, Martin et al. (2014) BMPER-induced BMP signaling promotes coronary artery remodeling. Dev Biol 386:385-94
Dyer, Laura; Pi, Xinchun; Patterson, Cam (2014) Connecting the coronaries: how the coronary plexus develops and is functionalized. Dev Biol 395:111-9
Tsuruta, James K; Klauber-DeMore, Nancy; Streeter, Jason et al. (2014) Ultrasound molecular imaging of secreted frizzled related protein-2 expression in murine angiosarcoma. PLoS One 9:e86642
Dyer, Laura A; Patterson, Cam (2013) A novel ex vivo culture method for the embryonic mouse heart. J Vis Exp :e50359
Chandler, Ronald L; Brennan, Jennifer; Schisler, Jonathan C et al. (2013) ARID1a-DNA interactions are required for promoter occupancy by SWI/SNF. Mol Cell Biol 33:265-80
Dyer, Laura A; Patterson, Cam (2013) Isolation of embryonic ventricular endothelial cells. J Vis Exp :

Showing the most recent 10 out of 60 publications