The L-type Ca2+ (CaL) channels are multi-protein complexes that include a pore- forming 11C subunit and smaller ancillary subunits. The ancillary 2 subunits promote the expression of 11C subunits at the surface membrane to increase the number of functional CaL channels. In vascular smooth muscle cells (VSMCs), CaL channels are only sparsely expressed in order to tightly regulate voltage-gated Ca2+ influx and vascular contraction. However, during the development of hypertension, we have shown that CaL channels profoundly upregulate in the VSMCs to fuel abnormal vasoconstriction. The goal of this revised project is to determine the mechanism of CaL channel upregulation in response to rises in blood pressure. We have noted that a specific 2 subunit, 23, selectively and profoundly increases in the mesenteric circulation of angiotensin (Ang II) hypertensive mice. The resulting overabundance of CaL channel 11C23 complexes results in elevated Ca2+ influx and abnormal Ca2+-dependent tone in the small arteries of the affected animals. In fact, pharmacological block of CaL channels sharply reduces blood pressure in Ang II hypertensive mice in vivo, but has little antihypertensive effect in control mice, suggesting a central contribution of CaL channels to the pathogenesis of hypertension. At the reviewers'behest, this revised application is tightly focused on delineated the mechanism of vascular CaL channel abnormalities in hypertensive mice to take advantage of gene deletion models.
Aim 1 will determine if an increased number of CaL channel 11C23 complexes is associated with anomalous Ca2+ influx in VSMCs of two mouse models of hypertension.
Aim 2 will use 23 knockout mice to determine if the 23 subunit is a requisite contributor to CaL channel upregulation and the development of hypertension. We predict that vascular CaL channel 11C23 complexes will fail to upregulate in response to Ang II or norepinephrine infusion in 23 knockout mice, and that the development of hypertension will be severely blunted. Finally, Aim 3 will utilize a novel microvascular assay that we have developed to monitor CaL channel expression in the VSMCs of single, pressurized mouse mesenteric arteries. Using this unique assay, we will directly test the hypothesis that high intraluminal pressure inhibits the turnover of CaL channels, thereby increasing their expression at the VSMC surface membrane during hypertension.

Public Health Relevance

Sixty million Americans have high blood pressure, which leads to heart attacks, kidney disease and stroke. This research project will determine if a specific molecule in the muscle cells of blood vessels is required for the abnormal appearance of membrane proteins that causes arteries to contract too much, thereby elevating blood pressure to dangerous levels.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL064806-11
Application #
8008818
Study Section
Hypertension and Microcirculation Study Section (HM)
Program Officer
OH, Youngsuk
Project Start
2000-05-01
Project End
2012-12-31
Budget Start
2011-01-01
Budget End
2011-12-31
Support Year
11
Fiscal Year
2011
Total Cost
$359,788
Indirect Cost
Name
University of Arkansas for Medical Sciences
Department
Pharmacology
Type
Schools of Medicine
DUNS #
122452563
City
Little Rock
State
AR
Country
United States
Zip Code
72205
Kharade, Sujay V; Sonkusare, Swapnil K; Srivastava, Anup K et al. (2013) The ?3 subunit contributes to vascular calcium channel upregulation and hypertension in angiotensin II-infused C57BL/6 mice. Hypertension 61:137-42
Pathan, Asif R; Rusch, Nancy J (2011) Two-pore domain K? channels: evidence for TWIK-2 in blood pressure regulation. Hypertension 58:539-41
Thakali, Keshari M; Kharade, Sujay V; Sonkusare, Swapnil K et al. (2010) Intracellular Ca2+ silences L-type Ca2+ channels in mesenteric veins: mechanism of venous smooth muscle resistance to calcium channel blockers. Circ Res 106:739-47
Pesic, Aleksandra; Madden, Jane A; Pesic, Miodrag et al. (2004) High blood pressure upregulates arterial L-type Ca2+ channels: is membrane depolarization the signal? Circ Res 94:e97-104
Molero, Mariela M; Giulumian, Ararat D; Reddy, Vikram B et al. (2002) Decreased endothelin binding and [Ca2+]i signaling in microvessels of DOCA-salt hypertensive rats. J Hypertens 20:1799-805
Pratt, Phillip F; Bonnet, Sebastien; Ludwig, Lynda M et al. (2002) Upregulation of L-type Ca2+ channels in mesenteric and skeletal arteries of SHR. Hypertension 40:214-9