Over the past decade an explosive growth of knowledge has occurred regarding molecules that impact upon every aspect of myocardial biology via signal transduction cascades to activate or repress cellular processes. However, certain basic essentials of networking remain obscure despite widespread acceptance of signaling as a fundamental mechanism for myocardial regulation. For example, what controls the duration and intensity of a particular signaling pathway once activated? How do specific signaling cascade(s) achieve dominance among the cacophony of networked players and concurrent cross-talk or even competition between positive versus negative feedback? The answer, at least in part, can be found with a """"""""molecular timer"""""""" that has yet to be studied in the myocardial context. This conductor of signal transduction, named Pin1, is a pivotal determinant of cellular proliferation, survival, commitment, and aging. Moreover, targets of Pin1 gleaned from published reports upon non-cardiac cells and tissues reveal a veritable """"""""who's who"""""""" of cardioactive molecules that influence virtually every aspect of myocardial biology. By musical analogy, Pin1 does not choose the song, but instead sets the beat and the tone that determines which signaling will be potentiated. This proposal will delineate a novel mechanism for control of signaling duration and intensity in the myocardium. Accomplishing the stated aims of this proposal will reveal a previously unknown layer of regulatory complexity that integrates known myocardial signaling cascades, thereby offering new possibilities for coordinate control of molecular signaling to enhance resistance to pathologic damage and to potentiate regeneration and repair. The innovation of this proposal rests with the concept of coordination of signaling by Pin1 and reprogramming cellular responses in a multifaceted fashion by altering a single nodal regulator. The short term goal is to determine the mechanistic basis of Pin1 action in cardiomyocytes, stem cells, and the intact myocardium and assess the consequences of manipulating Pin1 activity to improve resistance to damage and enhance reparative processes.
Specific aims will demonstrate: 1) Myocardial survival, proliferative, and hypertrophic signaling are orchestrated by Pin1, 2) Loss of Pin1 activity leads to premature aging of the myocardium and associated decline in hemodynamic performance, and 3) Pin1 expression determines myocardial survival, resistance to pathological injury, hypertrophic remodeling, reparative potential, and antagonizes the molecular phenotype of aging. The significance of these studies is the widespread impact of Pin1 upon multiple canonical transduction cascades accepted as cornerstones of myocardial biology, meaning that the findings of this proposal will be relevant to a large proportion of the myocardial and regenerative medicine scientific community. Collectively, these studies will unlock a new facet of myocardial biology and challenge researchers to incorporate the influence of timing, intensity, and durability when delineating the fundamental basis of how the """"""""music"""""""" of cellular signal transduction is ultimately chosen and played on the molecular level.

Public Health Relevance

Heart disease remains a major cause of morbidity and mortality in the United States, with long term care and hospitalization of patients a significant burden on the national health care system. Despite advances over the last several decades we are still not truly capable of addressing the fundamental issue in heart failure: the progressive loss of contractile function and viable tissue. This proposal focuses upon a novel fundamental molecular mechanism involving regulation of the timing and intensity for protective and regenerative signals in the heart to maintain cardiac structure and function resulting in extended quality of life and decreased medical cost.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL067245-12
Application #
8440306
Study Section
Myocardial Ischemia and Metabolism Study Section (MIM)
Program Officer
Wong, Renee P
Project Start
2001-06-01
Project End
2016-02-29
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
12
Fiscal Year
2013
Total Cost
$355,810
Indirect Cost
$117,810
Name
San Diego State University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
073371346
City
San Diego
State
CA
Country
United States
Zip Code
92182
Broughton, Kathleen M; Sussman, Mark A (2016) Empowering Adult Stem Cells for Myocardial Regeneration V2.0: Success in Small Steps. Circ Res 118:867-80
Orogo, Amabel M; Gonzalez, Eileen R; Kubli, Dieter A et al. (2015) Accumulation of Mitochondrial DNA Mutations Disrupts Cardiac Progenitor Cell Function and Reduces Survival. J Biol Chem 290:22061-75
Hariharan, Nirmala; Sussman, Mark A (2015) Cardiac aging - Getting to the stem of the problem. J Mol Cell Cardiol 83:32-6
Nguyen, Nathalie; Sussman, Mark A (2015) Rejuvenating the senescent heart. Curr Opin Cardiol 30:235-9
Hariharan, Nirmala; Quijada, Pearl; Mohsin, Sadia et al. (2015) Nucleostemin rejuvenates cardiac progenitor cells and antagonizes myocardial aging. J Am Coll Cardiol 65:133-47
Quijada, Pearl; Sussman, Mark A (2015) Circulating around the tissue: hematopoietic cell-based fusion versus transdifferentiation. Circ Res 116:563-5
Quijada, Pearl; Hariharan, Nirmala; Cubillo, Jonathan D et al. (2015) Nuclear Calcium/Calmodulin-dependent Protein Kinase II Signaling Enhances Cardiac Progenitor Cell Survival and Cardiac Lineage Commitment. J Biol Chem 290:25411-26
Samse, Kaitlen; Emathinger, Jacqueline; Hariharan, Nirmala et al. (2015) Functional Effect of Pim1 Depends upon Intracellular Localization in Human Cardiac Progenitor Cells. J Biol Chem 290:13935-47
Gude, Natalie; Joyo, Eri; Toko, Haruhiro et al. (2015) Notch activation enhances lineage commitment and protective signaling in cardiac progenitor cells. Basic Res Cardiol 110:29
Doroudgar, Shirin; Völkers, Mirko; Thuerauf, Donna J et al. (2015) Hrd1 and ER-Associated Protein Degradation, ERAD, are Critical Elements of the Adaptive ER Stress Response in Cardiac Myocytes. Circ Res 117:536-46

Showing the most recent 10 out of 78 publications