Cellular cholesterol levels are tightly regulated by multiple homeostatic pathways that respond to elevations of membrane cholesterol and to enzymatically formed oxygenated cholesterol derivatives (i.e., oxysterols). Alterations in sterol sensing and trafficking pathways contribute to human inborn errors of metabolism (e.g., Niemann-Pick C disease) and to acquired disease states (e.g., atherosclerosis). Under physiological conditions, sterol-regulated transcriptional pathways act in concert to inhibit uptake of exogenous lipoproteins and suppress de novo cholesterol synthesis, resulting in half-maximal suppression of these responses within several hours. By contrast, pathophysiological cholesterol levels, such as those present in disease states, activate transcription-independent mechanisms that respond within minutes to changes in increments in membrane cholesterol. Recent studies with oxysterol enantiomers provide evidence that sterol-membrane interactions underlie these acute cholesterol homeostatic responses. We hypothesize that side-chain oxysterols serve a critical role in acute regulation of cholesterol homeostasis through direct modulation of plasma membrane lipid environment. We propose that side-chain oxysterols trigger transcription-independent regulatory pathways by disordering membrane phospholipid organization and/or increasing the accessibility of cholesterol. This hypothesis will be tested by the following Specific Aims: (1) Characterization of the mechanism by which oxysterols perturb the structure of model cholesterol-phospholipid bilayers, (2) Examination of the efect of oxysterols on cholesterol accessibility and position in physiological membranes, and (3) Examination of the mechanism by which oxysterols promote release of plasma membrane cholesterol to intracellular pools. The proposed studies wil further our understanding of how perturbations in membrane structure relay cholesterol homeostatic regulatory signals and may identify new pharmacological targets for manipulation of the cellular handling of cholesterol in disease states.

Public Health Relevance

While cholesterol is essential for normal cellular function, alterations in cholesterol metabolism can contribute to human genetic disease and to acquired disease states, such as atherosclerosis. The goal of this study is to understand at the molecular level how cells respond to excess cholesterol and maintain cholesterol balance. The proposed studies may identify new drug targets for treatment of patients with elevated cholesterol levels, who are at risk for heart disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL067773-12
Application #
8583332
Study Section
Integrative Nutrition and Metabolic Processes Study Section (INMP)
Program Officer
Hasan, Ahmed AK
Project Start
2001-07-01
Project End
2015-11-30
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
12
Fiscal Year
2014
Total Cost
$342,000
Indirect Cost
$117,000
Name
Washington University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Krause, Martin R; Wang, Minghui; Mydock-McGrane, Laurel et al. (2014) Eliminating the roughness in cholesterol's ?-face: does it matter? Langmuir 30:12114-8
Peyrot, Sara M; Nachtergaele, Sigrid; Luchetti, Giovanni et al. (2014) Tracking the subcellular fate of 20(s)-hydroxycholesterol with click chemistry reveals a transport pathway to the Golgi. J Biol Chem 289:11095-110
Bielska, Agata A; Olsen, Brett N; Gale, Sarah E et al. (2014) Side-chain oxysterols modulate cholesterol accessibility through membrane remodeling. Biochemistry 53:3042-51
Mydock-McGrane, Laurel; Rath, Nigam P; Covey, Douglas F (2014) Synthesis of a smoothened cholesterol: 18,19-di-nor-cholesterol. J Org Chem 79:5636-43
Sene, Abdoulaye; Khan, Aslam A; Cox, Douglas et al. (2013) Impaired cholesterol efflux in senescent macrophages promotes age-related macular degeneration. Cell Metab 17:549-61
Olsen, Brett N; Bielska, Agata A; Lee, Tiffany et al. (2013) The structural basis of cholesterol accessibility in membranes. Biophys J 105:1838-47
Blanc, Mathieu; Hsieh, Wei Yuan; Robertson, Kevin A et al. (2013) The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response. Immunity 38:106-18
Nachtergaele, Sigrid; Mydock, Laurel K; Krishnan, Kathiresan et al. (2012) Oxysterols are allosteric activators of the oncoprotein Smoothened. Nat Chem Biol 8:211-20
Olsen, Brett N; Schlesinger, Paul H; Ory, Daniel S et al. (2012) Side-chain oxysterols: from cells to membranes to molecules. Biochim Biophys Acta 1818:330-6
Bielska, Agata A; Schlesinger, Paul; Covey, Douglas F et al. (2012) Oxysterols as non-genomic regulators of cholesterol homeostasis. Trends Endocrinol Metab 23:99-106

Showing the most recent 10 out of 23 publications