Tissue Factor Pathway Inhibitor (TFPI) is an endothelial- associated anticoagulant protein that directly inhibits the Tissue Factor-factor VIIa (TF-fVIIa) catalytic complex preventing intravascular thrombosis, disseminated intravascular coagulation, tumor metastasis and other pathologies associated with production of TF within the vasculature. TF-fVIIa activates blood clotting via cleavage of factors IX and X and initiates inflammation via activation of Protease Activated Receptors (PARs). Our long-term goal is to develop methods for prevention and treatment of the adverse effects of intravascular TF activity based upon understanding its pathobiology through studies of its inhibition by TFPI. TFPI is made in three alternatively spliced isoforms that differ in their tissue distribution, domain structure, and mechanism for cell surface association. We hypothesize that examination of structurally diverse forms of TFPI with distinct mechanisms for cell surface association will reveal variable efficacies in their ability to inhibit TF-mediated pro-coagulant and/or pro-inflammatory activity. By characterizing the unique features of how TFPI down-regulates TF activity we will better understand the pathogenesis of diseases mediated by intravascular expression of TF.
Three Specific Aims are designed to define the functions of different forms of TFPI using both in vitro and in vivo model systems. SA1 will compare the anti-TF activity of different forms of GPI-anchored TFPI on the surface of CHO cells and primary mouse endothelial cells. SA2 will examine how the mode of membrane association (GPI-anchored vs. transmembrane) TFPI activity on CHO cells, aerolysin resistant EA.hy926 cells and primary mouse endothelial cells. Studies will also be performed to examine how caveolin-1 and the GPI-anchored co- receptor for TFPI-alpha impact TFPI inhibitory activity. In SA3 we will produce transgenic mice specifically expressing TFPI-alpha or TFPI-beta using an inducible and reversible tetracycline controlled transactivator system. The transgenic mice will be bred with TFPI() mice to determine if there is isoform specific rescue of embryonic lethality.

Public Health Relevance

This proposal is relevant to public health as it investigates cellular responses to injury and inflammation, balancing the development of blood clots necessary to prevent severe bleeding while at the same time avoiding the development of intravascular blood clots that can result in heart attack or stroke and enhance tumor metastasis.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL068835-07
Application #
8008763
Study Section
Hemostasis and Thrombosis Study Section (HT)
Program Officer
Link, Rebecca P
Project Start
2001-12-01
Project End
2012-12-31
Budget Start
2011-01-01
Budget End
2011-12-31
Support Year
7
Fiscal Year
2011
Total Cost
$366,750
Indirect Cost
Name
Bloodcenter of Wisconsin, Inc.
Department
Type
DUNS #
057163172
City
Milwaukee
State
WI
Country
United States
Zip Code
53233
Wood, Jeremy P; Baumann Kreuziger, Lisa M; Desai, Umesh R et al. (2016) Blocking inhibition of prothrombinase by tissue factor pathway inhibitor alpha: a procoagulant property of heparins. Br J Haematol 175:123-32
Mast, Alan E (2016) Tissue Factor Pathway Inhibitor: Multiple Anticoagulant Activities for a Single Protein. Arterioscler Thromb Vasc Biol 36:9-14
Peterson, Julie A; Maroney, Susan A; Mast, Alan E (2016) Targeting TFPI for hemophilia treatment. Thromb Res 141 Suppl 2:S28-30
Ellery, Paul E R; Maroney, Susan A; Cooley, Brian C et al. (2015) A balance between TFPI and thrombin-mediated platelet activation is required for murine embryonic development. Blood 125:4078-84
Maroney, S A; Mast, A E (2015) New insights into the biology of tissue factor pathway inhibitor. J Thromb Haemost 13 Suppl 1:S200-7
Ellery, Paul E R; Maroney, Susan A; Martinez, Nicholas D et al. (2014) Translation of human tissue factor pathway inhibitor-* mRNA is controlled by alternative splicing within the 5' untranslated region. Arterioscler Thromb Vasc Biol 34:187-95
Wood, Jeremy P; Ellery, Paul E R; Maroney, Susan A et al. (2014) Protein S is a cofactor for platelet and endothelial tissue factor pathway inhibitor-* but not for cell surface-associated tissue factor pathway inhibitor. Arterioscler Thromb Vasc Biol 34:169-76
Wood, Jeremy P; Ellery, Paul E R; Maroney, Susan A et al. (2014) Biology of tissue factor pathway inhibitor. Blood 123:2934-43
Maroney, Susan A; Hansen, Karen G; Mast, Alan E (2013) Cellular expression and biological activities of alternatively spliced forms of tissue factor pathway inhibitor. Curr Opin Hematol 20:403-9
Wood, Jeremy P; Bunce, Matthew W; Maroney, Susan A et al. (2013) Tissue factor pathway inhibitor-alpha inhibits prothrombinase during the initiation of blood coagulation. Proc Natl Acad Sci U S A 110:17838-43

Showing the most recent 10 out of 28 publications