In the continuation of this grant, we propose further examination of the roles played by the collectins, SP-A and SP-D in naive and inflamed lungs. We earlier provided support for the concept that these molecules can act as dual-function discriminators to maintain a relatively anti-inflammatory environment in the resting lung, but also as innate immune system recognition molecules that can initiate inflammation and immune responses to injury and potential pathogens. These opposing effects were proposed to result from the suppressive actions of lung collectin head groups acting on the ITIM-containing receptor, SIRP on the one hand or, in the alternative orientation, pro-inflammatory effects from their collagenous tails interacting with a complex of calreticulin and LDL receptor related protein (LRP-1) on the other. In this renewal, the dual effects of the collectins and their candidate receptors will be pursued in the context of lung macrophages. We hypothesize that the resident alveolar macrophage phenotype is significantly driven by its exposure to the lung collectins, which maintain a tonic suppressive stimulation through SIRP and its downstream effectors, the SHP tyrosine phosphatases acting on inflammatory mediator production through, in part, inhibition of P38 MAPkinase. In this model, the sentinel function of these resident macrophages is represented by their ability to be unshackled from the suppression in response to injury and invasion. We propose that this unshackling of the suppressed state is caused in part by the reversed function of these same collectins now acting through their tails on LRP. Studies will be performed to address this balance using a variety of potential "danger" signals on resident alveolar macrophages (RAM) in vitro and in the naive mouse lung. These will be contrasted with "inflammatory" alveolar macrophages (IAM) that have emigrated into the lung during an inflammatory reaction and whose markedly different phenotype is proposed to reflect a reduced effect of the collectins and their stimulation of SIRP. We further suggest, and will explore, the persistence of resident alveolar macrophages throughout an inflammatory response with return to their sentinel function after resolution. These studies will involve a system in which the two types of macrophage in the mouse are distinguishable following irradiation (with shielding of the lungs) and transplant with GFP-tagged bone marrow. The inflammatory macrophages are suggested to undergo local apoptosis and removal during resolution of the inflammation, in part, because they are less effectively protected from apoptosis by the lung collectins, perhaps also acting through SIRP.

Public Health Relevance

. The normal lung is constantly exposed to the external environment and needs to discriminate between relatively harmless exposure and potential dangerous insults. Resident alveolar macrophages are suggested to mediate an important element of this discrimination. We suggest that they are normally maintained in a quiet, somewhat suppressed state that can be released (unshackled) by danger signals to then initiate a protective inflammatory response. A potential mechanism for this is their response to the local lung collectins SP-A and SP-D. The objective of this proposal is to explore the fascinating dual functions of SP-A and SP-D, which in one orientation appear to suppress macrophage function and in another can recognize foreign insults and stimulate the macrophages to produce pro-inflammatory mediators. Accordingly we will examine their contribution to the unique phenotype of the resident alveolar macrophage with an ultimate objective of devising new interventional approaches to regulate pulmonary inflammatory reactions and their outcomes.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL068864-09
Application #
8225209
Study Section
Lung Cellular, Molecular, and Immunobiology Study Section (LCMI)
Program Officer
Eu, Jerry Pc
Project Start
2002-09-30
Project End
2014-02-28
Budget Start
2012-03-01
Budget End
2014-02-28
Support Year
9
Fiscal Year
2012
Total Cost
$386,100
Indirect Cost
$138,600
Name
National Jewish Health
Department
Type
DUNS #
076443019
City
Denver
State
CO
Country
United States
Zip Code
80206
Desch, A Nicole; Gibbings, Sophie L; Clambey, Eric T et al. (2014) Dendritic cell subsets require cis-activation for cytotoxic CD8 T-cell induction. Nat Commun 5:4674
Desch, A Nicole; Henson, Peter M; Jakubzick, Claudia V (2013) Pulmonary dendritic cell development and antigen acquisition. Immunol Res 55:178-86
Kearns, Mark T; Dalal, Samay; Horstmann, Sarah A et al. (2012) Vascular endothelial growth factor enhances macrophage clearance of apoptotic cells. Am J Physiol Lung Cell Mol Physiol 302:L711-8
Janssen, William J; Henson, Peter M (2012) Cellular regulation of the inflammatory response. Toxicol Pathol 40:166-73
Bartel, Dianna L (2012) Glial responses after chorda tympani nerve injury. J Comp Neurol 520:2712-29
Cole, Caroline; Thomas, Stacey; Filak, Holly et al. (2012) Nitric oxide increases susceptibility of Toll-like receptor-activated macrophages to spreading Listeria monocytogenes. Immunity 36:807-20
Bratton, Donna L; Henson, Peter M (2011) Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol 32:350-7
Kenyon, Karla D; Cole, Caroline; Crawford, Fran et al. (2011) IgG autoantibodies against deposited C3 inhibit macrophage-mediated apoptotic cell engulfment in systemic autoimmunity. J Immunol 187:2101-11
Janssen, William J; Barthel, Lea; Muldrow, Alaina et al. (2011) Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury. Am J Respir Crit Care Med 184:547-60
Fernandez-Boyanapalli, Ruby; Frasch, S Courtney; Riches, David W H et al. (2010) PPAR? activation normalizes resolution of acute sterile inflammation in murine chronic granulomatous disease. Blood 116:4512-22

Showing the most recent 10 out of 24 publications