Vascular inflammation is a hallmark of vulnerable atherosclerotic plaques, at high-risk for causing acute clinical events. 18F-labeled fluorodeoxyglucose (18F-FDG) Positron Emission Tomography (PET) imaging in combination with computed tomography (CT) has emerged as an accurate, reliable and reproducible tool to quantify vascular inflammation in carotid, aorta and femoral arteries. Recently, novel PET tracers such as 18F- labeled sodium fluoride (18F-NaF) have been used to target many biological processes in atherosclerosis other than inflammation, including active micro-calcification, which appears to be an important marker of unstable atherosclerotic plaques. Use of PET to quantify inflammation in coronary arteries is challenging due to respiratory and cardiac motions, and the limited spatial resolution of PET. These challenges can be overcome by using motion and partial volume correction strategies that may require long and repeated scans. However the use of CT exposes the subject to X-ray radiation and is unsuitable for such long repeated scans as well as for longitudinal tracking of interventions. Recently, systems that combine PET and Magnetic Resonance Imaging (MRI) have become available that allow for simultaneous, co-registered PET and MRI acquisitions. MRI requires no ionizing radiation and produces high spatial and temporal resolution images with excellent soft tissue contrast. These characteristics are ideally suited to repeated, tomographic imaging for motion correction, repeated scans in longitudinal studies, improving partial volume error (PVE) correction of the PET data, and in providing complementary information about coronary plaque morphology. As part of this grant proposal, we will develop and test methodologies for motion correction using MRI to optimize coronary PET imaging using phantoms and in an in vivo setting (Aim 1). We will also examine strategies for partial volume corrections of PET data to improve coronary PET imaging (Aim 2). As the final Aim (Aim 3) of this proposal, we will use methodologies developed and optimized in Aims 1 and 2 to evaluate in vivo, combined MR/PET imaging of FDG and NaF uptake in the coronary arteries of individuals following an acute myocardial infarction to determine the ability of these techniques to discriminate between the culprit lesions responsible for the clinical event and a non-culprit vessel.

Public Health Relevance

We are developing improvements in imaging techniques for a novel, combined MRI and PET imaging system. We believe such advances will significantly impact our understanding and diagnosis of atherosclerosis in the coronary arteries, which is the major cause of sudden heart attacks.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL071021-14
Application #
9265910
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Danthi, Narasimhan
Project Start
2002-06-01
Project End
2020-04-30
Budget Start
2017-05-01
Budget End
2018-04-30
Support Year
14
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Icahn School of Medicine at Mount Sinai
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Fayad, Zahi A; Swirski, Filip K; Calcagno, Claudia et al. (2018) Monocyte and Macrophage Dynamics in the Cardiovascular System: JACC Macrophage in CVD Series (Part 3). J Am Coll Cardiol 72:2198-2212
Dweck, Marc R; Abgral, Ronan; Trivieri, Maria Giovanna et al. (2018) Hybrid Magnetic Resonance Imaging and Positron Emission Tomography With Fluorodeoxyglucose to Diagnose Active Cardiac Sarcoidosis. JACC Cardiovasc Imaging 11:94-107
Abgral, Ronan; Dweck, Marc R; Trivieri, Maria Giovanna et al. (2017) Clinical Utility of Combined FDG-PET/MR to Assess Myocardial Disease. JACC Cardiovasc Imaging 10:594-597
Tawakol, Ahmed; Ishai, Amorina; Takx, Richard Ap et al. (2017) Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet 389:834-845
Alaarg, Amr; Pérez-Medina, Carlos; Metselaar, Josbert M et al. (2017) Applying nanomedicine in maladaptive inflammation and angiogenesis. Adv Drug Deliv Rev 119:143-158
Dweck, Marc R; Fayad, Zahi A (2017) Multitarget Vulnerable Plaque Imaging. Circ Cardiovasc Imaging 10:
Sigovan, Monica; Bidet, Clément; Bros, Sébastien et al. (2017) 3D black blood MR angiography of the carotid arteries. A simple sequence for plaque hemorrhage and stenosis evaluation. Magn Reson Imaging 42:95-100
Tang, Dalin; Yang, Chun; Huang, Sarayu et al. (2017) Cap inflammation leads to higher plaque cap strain and lower cap stress: An MRI-PET/CT-based FSI modeling approach. J Biomech 50:121-129
Robson, Philip M; Dweck, Marc R; Trivieri, Maria Giovanna et al. (2017) Coronary Artery PET/MR Imaging: Feasibility, Limitations, and Solutions. JACC Cardiovasc Imaging 10:1103-1112
Eldib, Mootaz; Bini, Jason; Faul, David D et al. (2016) Attenuation Correction for Magnetic Resonance Coils in Combined PET/MR Imaging: A Review. PET Clin 11:151-60

Showing the most recent 10 out of 139 publications