The ductus arteriosus (DA) is a fetal artery that allows blood ejected from the right ventricle to bypass the pulmonary circulation in utero. At birth, functional closure of the DA is initiated within minutes by O2-induced vasoconstriction. Functional closure (vasoconstriction) stops right to left shunting of blood and promotes anatomical closure. Failure of these processes leads to persistent ductus arteriosus, a common form of congenital heart disease in premature infants. Although endothelial-derived mediators modulate DA tone, O2 exerts a direct constrictor effect. During the first 5 years of this grant we showed that the DA's O2-sensing pathway consists of a sensor (the mitochondrial electron transport chain), which produces a diffusible mediator (H2O2), that inhibits voltage-gated K+ channels, such as Kv1.5. At birth, O2-induced increases in mitochondrial H2O2 in DA smooth muscle cells (DASMC) promote constriction by several mechanisms: Kv channel inhibition, direct activation of O2-sensitive calcium channels and rho kinase activation. Moreover, preterm DASMC are relatively deficient in these mechanisms, explaining the prevalence of persistent DA in preterm DA. This renewal focuses on a discovery made during a search for splice variants of Kv1.5 in human DASMC. We found a novel K+ channel, Human Oxygen-Sensitive K+ channel (HOSK), that when heterologously expressed creates a current that is voltage-gated, displays K+ specificity (Rb>K>>Cs>Na), and is 4- aminopyridine sensitive. HOSK appears to contribute to the resting membrane potential in human DASMC. HOSK siRNA reduces the O2-sensitive current in human DASMC. HOSK cDNA corresponds to a 3.0 kb neuronal, expressed sequence tag (EST) and has an unusual coding mechanism. HOSK and collagen 12(I) have identical mRNA with the much smaller 21 kDa HOSK resulting from initiation of translation at an internal ribosomal entry site (IRES). In silico modeling suggests that HOSK may have four hydrophobic domains (HD), a unique K+ selectivity filter (GVL, rather than the typical GYG amino acid sequence) and a variant voltage sensor. Phylogenetic analysis suggests HOSK originated in amniotes. In this proposal, the relative importance of HOSK versus canonical O2-sensitive voltage-gated K+ channels, Kv1.5 and Kv2.1, will be compared in term human DA, and two models of impaired O2 constriction: preterm rabbit DA and ionically remodeled human DA. Hypothesis 1: HOSK is a novel K+ channel, arising independent of the canonical K+ channel family. Hypothesis 2: HOSK contributes to DA constriction and augmenting HOSK expression will enhance O2- constriction in preterm rabbit DA and ionically remodeled human DA. Significance: The proposed experiments will contribute to our understanding of the normal mechanism of DA constriction and functional closure of the human DA. HOSK, hidden by its complex encoding mechanism and unique structure may offer a new explanation for how O2 causes functional closure and shed light on the link between DA constriction and fibrous obliteration of the DA.

Public Health Relevance

The ductus arteriosus (DA) is a fetal artery that allows blood ejected from the right ventricle to bypass the pulmonary circulation in utero. The DA closes at birth by a by an O2-induced, vasoconstrictor mechanism that is intrinsic to the smooth muscle cells. Failure of functional closure (vasoconstriction) can cause persistent DA. During the first 5 years of this grant we showed that the DA's O2-sensing pathway consists of a mitochondrial sensor, which produces diffusible H2O2, that inhibits voltage-gated K+ channels, such as Kv1.5. This renewal assesses a novel voltage-gated K+ channel, Human Oxygen-Sensitive K+ channel (HOSK). Hidden by its complex encoding mechanism within the collagen a2(1) gene HOSK has a unique structure and explain how O2 causes functional closure of the DA and extend our basic knowledge of K+ channel structure/function.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL071115-07
Application #
7851367
Study Section
Electrical Signaling, Ion Transport, and Arrhythmias Study Section (ESTA)
Program Officer
Kaltman, Jonathan R
Project Start
2002-07-01
Project End
2011-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
7
Fiscal Year
2010
Total Cost
$466,215
Indirect Cost
Name
University of Chicago
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Tian, Lian; Neuber-Hess, Monica; Mewburn, Jeffrey et al. (2017) Ischemia-induced Drp1 and Fis1-mediated mitochondrial fission and right ventricular dysfunction in pulmonary hypertension. J Mol Med (Berl) 95:381-393
Archer, Stephen L (2017) Pyruvate Kinase and Warburg Metabolism in Pulmonary Arterial Hypertension: Uncoupled Glycolysis and the Cancer-Like Phenotype of Pulmonary Arterial Hypertension. Circulation 136:2486-2490
Dunham-Snary, Kimberly J; Wu, Danchen; Sykes, Edward A et al. (2017) Hypoxic Pulmonary Vasoconstriction: From Molecular Mechanisms to Medicine. Chest 151:181-192
Wu, Danchen; Archer, Stephen L (2016) Pulmonary hypertension begets pulmonary hypertension: mutually reinforcing roles for haemodynamics, inflammation, and cancer-like phenotypes. Cardiovasc Res 111:1-4
Dunham-Snary, Kimberly J; Hong, Zhigang G; Xiong, Ping Y et al. (2016) A mitochondrial redox oxygen sensor in the pulmonary vasculature and ductus arteriosus. Pflugers Arch 468:43-58
Atkins, Kathleen; Dasgupta, Asish; Chen, Kuang-Hueih et al. (2016) The role of Drp1 adaptor proteins MiD49 and MiD51 in mitochondrial fission: implications for human disease. Clin Sci (Lond) 130:1861-74
López-Barneo, José; Macías, David; Platero-Luengo, Aida et al. (2016) Carotid body oxygen sensing and adaptation to hypoxia. Pflugers Arch 468:59-70
Ryan, John J; Archer, Stephen L (2015) Emerging concepts in the molecular basis of pulmonary arterial hypertension: part I: metabolic plasticity and mitochondrial dynamics in the pulmonary circulation and right ventricle in pulmonary arterial hypertension. Circulation 131:1691-702
Sharp, Willard W; Beiser, David G; Fang, Yong Hu et al. (2015) Inhibition of the mitochondrial fission protein dynamin-related protein 1 improves survival in a murine cardiac arrest model. Crit Care Med 43:e38-47
Ryan, John; Dasgupta, Asish; Huston, Jessica et al. (2015) Mitochondrial dynamics in pulmonary arterial hypertension. J Mol Med (Berl) 93:229-42

Showing the most recent 10 out of 90 publications