This is a revised (A1) competitive renewal application for an R01 initially focused on the role of a novel homeodomain protein called Hop that we discovered in the embryonic heart. We have found that Hop loss of function results in a developmental cardiac defect and that over-expression results in cardiac hypertrophy. Hop can function at the molecular level as a transcriptional co-repressor by recruiting class I HDACs. This finding led us to test the effects of HDAC inhibitors and we have found that these agents can block cardiac hypertrophy induced by Hop over-expression and also hypertrophy resulting from other stresses including beta-adrenergic agonists and stretch. Therefore, we have sought the specific class I HDAC(s) that account for these effects, and we have identified high levels of HDAC2 in the developing and adult heart. HDAC2 loss of function results in mice that are resistant to Hop- induced cardiac hypertrophy and to hypertrophy induced by beta-adrenergic agonists. We have shown that resistance to hypertrophy in these models is caused by constitutive activation of GSK3-beta, since antagonists of GSK3-beta restore the ability to hypertrophy on HDAC2 null animals. Our data indicates that HDAC2 affects the AKT-GSK3-beta pathway by directly repressing a novel inositol polyphosphate phosphatase called INPP5F, which functions to degrade PIP3 and thus affects the AKT cascade. These findings have direct clinical and translational implications since phosphatases are excellent drugable targets for the treatment of cardiovascular disease and because HDAC inhibitors are already in clinical trials for the treatment of cancer and could be readily adapted for use in the cardiac arena. Therefore, we will pursue these observations by: 1) Developing a floxed allele of HDAC2 in order to perform tissue and temporal specific deletion and to determine the effects of HDAC2 loss of function on regression of pre-established hypertrophy;2) Elucidation of the genetic and biochemical interaction between Hop and HDAC2, and;3) Examination of the function of INPP5F through gain and loss of function approaches in cells and in mice. These experiments offer strong prospects for developing new therapeutic avenues and paradigms for the treatment of cardiac hypertrophy and heart failure, with implications for the more general fields of cellular and organ growth regulation.

Public Health Relevance

This project focuses on the causes of congestive heart failure, and on finding new therapeutic targets. Heart failure is a leading cause of death and disability in the United States, and the incidence is rising. We have found that HDAC inhibitors, which are drugs currently in clinical trials for cancer therapy, have beneficial effects in terms of heart failure prevention in animal models. This project explores the possibility that an enzyme called HDAC2, expressed in the heart, is the molecular target for HDAC inhibitors, and that it functions by regulating a novel phosphatase in the heart called INPP5F. We hope to determine if HDAC2 and INPP5F represent new targets for the development of specific therapies for heart disease.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Cardiovascular Differentiation and Development Study Section (CDD)
Program Officer
Schramm, Charlene A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
Anatomy/Cell Biology
Schools of Medicine
United States
Zip Code
Takeda, Norifumi; Jain, Rajan; Leboeuf, Matthew R et al. (2013) Hopx expression defines a subset of multipotent hair follicle stem cells and a progenitor population primed to give rise to K6+ niche cells. Development 140:1655-64
Singh, Nikhil; Gupta, Mudit; Trivedi, Chinmay M et al. (2013) Murine craniofacial development requires Hdac3-mediated repression of Msx gene expression. Dev Biol 377:333-44
Banerjee, Audreesh; Trivedi, Chinmay M; Damera, Gautam et al. (2012) Trichostatin A abrogates airway constriction, but not inflammation, in murine and human asthma models. Am J Respir Cell Mol Biol 46:132-8
Trivedi, Chinmay M; Cappola, Thomas P; Margulies, Kenneth B et al. (2011) Homeodomain only protein x is down-regulated in human heart failure. J Mol Cell Cardiol 50:1056-8
Singh, Nikhil; Trivedi, Chinmay M; Lu, MinMin et al. (2011) Histone deacetylase 3 regulates smooth muscle differentiation in neural crest cells and development of the cardiac outflow tract. Circ Res 109:1240-9
Sun, Zheng; Singh, Nikhil; Mullican, Shannon E et al. (2011) Diet-induced lethality due to deletion of the Hdac3 gene in heart and skeletal muscle. J Biol Chem 286:33301-9
Takeda, Norifumi; Jain, Rajan; LeBoeuf, Matthew R et al. (2011) Interconversion between intestinal stem cell populations in distinct niches. Science 334:1420-4
Singh, Manvendra K; Li, Yan; Li, Shanru et al. (2010) Gata4 and Gata5 cooperatively regulate cardiac myocyte proliferation in mice. J Biol Chem 285:1765-72
LeBoeuf, Matthew; Terrell, Anne; Trivedi, Sohum et al. (2010) Hdac1 and Hdac2 act redundantly to control p63 and p53 functions in epidermal progenitor cells. Dev Cell 19:807-18
Trivedi, Chinmay M; Zhu, Wenting; Wang, Qiaohong et al. (2010) Hopx and Hdac2 interact to modulate Gata4 acetylation and embryonic cardiac myocyte proliferation. Dev Cell 19:450-9

Showing the most recent 10 out of 19 publications