Increased myofilament Ca sensitivity is a common feature of sarcomeric mutations that cause familial hypertrophic cardiomyopathy (HCM) and the same Ca sensitivity increase has also been described after myocardial infarction (MI). Both diseases are associated with a high risk for ventricular arrhythmia and sudden death, but the mechanisms linking myofilament Ca sensitivity and arrhythmia susceptibility remain poorly understood. This renewal application will investigate the mechanistic link between myofilament Ca sensitivity and triggered arrhythmia. During the last funding cycle, we discovered that two Ca-sensitizing Troponin T (TnT) mutations (I79N, F110I) and the Ca sensitizing compound EMD57033 both significantly increase the Ca binding affinity of the cytosol (i.e., apparent Kd), but have no effect on the maximal cytosolic buffering capacity (i.e., Bmax). These data establish for the first time a direct effect of the TnT mutations on cytosolic Ca buffering properties. The main consequence of the increased myofilament Ca binding affinity at physiological heart rates was an increase in end-diastolic Ca in the cytosol. Surprisingly, and in contrast to previous predictions, Ca content in the sarcoplasmic reticulum (SR) was NOT reduced. Rather, the net effect of increased myofilament Ca binding was the accumulation of Ca in the cytosol during periods of rapid heart rates, which after brief pauses then led to SR Ca overload, action potential (AP) prolongation and early afterdepolarizations. Together with our finding of pause-dependent triggering of serious ventricular arrhythmia both in HCM and post-MI mouse models, these provocative new results have led us to formulate the following hypothesis: Increased myofilament Ca binding affinity is a fundamental defect that causes pause-dependent SR Ca overload and thereby increases triggered arrhythmia susceptibility. Experiments in Aim 1 will test whether our hypothesis can be generalized to other sarcomeric mutations that cause inherited cardiomyopathies (i.e., familial HCM or dilated cardiomyopathy [DCM]).
Aim 2 will determine how increased myofilament Ca binding alters Ca handling and AP regulation in different species.
Aim 3 will test whether increased myofilament Ca binding causes arrhythmia risk in acquired heart disease (i.e., ischemic cardiomyopathy).
Aim 1. To test the hypothesis that sarcomeric mutations that change myofilament Ca sensitivity cause concordant changes in myofilament Ca binding affinity and cytosolic Ca buffering Aim 2. To determine the effect of increased myofilament Ca binding affinity on myocyte Ca homeostasis and action potential regulation in different species Aim 3. To test the hypothesis that increased myofilament Ca binding contributes to triggered arrhythmia after chronic MI

Public Health Relevance

The proposed work will study the causes for certain inherited heart diseases associated with arrhythmia (= irregular heart beats) and a high risk for sudden and premature deaths. The studies will also examine the benefit of new drugs in an animal model, which will provide important information for new drug therapies for patients with inherited arrhythmia disorders.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
2R01HL071670-10
Application #
8653094
Study Section
Special Emphasis Panel (ZRG1-CVRS-Q (02))
Program Officer
Lathrop, David A
Project Start
2003-09-01
Project End
2017-11-30
Budget Start
2013-12-12
Budget End
2014-11-30
Support Year
10
Fiscal Year
2014
Total Cost
$351,938
Indirect Cost
$126,938
Name
Vanderbilt University Medical Center
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Johnson, Christopher N; Potet, Franck; Thompson, Matthew K et al. (2018) A Mechanism of Calmodulin Modulation of the Human Cardiac Sodium Channel. Structure 26:683-694.e3
Wang, Lili; Kim, Kyungsoo; Parikh, Shan et al. (2018) Hypertrophic cardiomyopathy-linked mutation in troponin T causes myofibrillar disarray and pro-arrhythmic action potential changes in human iPSC cardiomyocytes. J Mol Cell Cardiol 114:320-327
Raucci Jr, Frank J; Shoemaker, M Benjamin; Knollmann, Bjorn C (2017) Clinical phenotype of HCN4-related sick sinus syndrome. Heart Rhythm 14:725-726
Wang, Lili; Kryshtal, Dmytro O; Kim, Kyungsoo et al. (2017) Myofilament Calcium-Buffering Dependent Action Potential Triangulation in Human-Induced Pluripotent Stem Cell Model of Hypertrophic Cardiomyopathy. J Am Coll Cardiol 70:2600-2602
Parikh, Shan S; Blackwell, Daniel J; Gomez-Hurtado, Nieves et al. (2017) Thyroid and Glucocorticoid Hormones Promote Functional T-Tubule Development in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Circ Res 121:1323-1330
Gomez-Hurtado, Nieves; Blackwell, Daniel Jesse; Knollmann, Bjorn Christian (2017) Modelling human calmodulinopathies with induced pluripotent stem cells: progress and challenges. Cardiovasc Res 113:437-439
Knollmann, Björn C (2017) Cardiac regulatory mechanisms: new concepts and challenges. J Physiol 595:3683-3684
Gomez-Hurtado, Nieves; Boczek, Nicole J; Kryshtal, Dmytro O et al. (2016) Novel CPVT-Associated Calmodulin Mutation in CALM3 (CALM3-A103V) Activates Arrhythmogenic Ca Waves and Sparks. Circ Arrhythm Electrophysiol 9:
Stroud, Dina Myers; Yang, Tao; Bersell, Kevin et al. (2016) Contrasting Nav1.8 Activity in Scn10a-/- Ventricular Myocytes and the Intact Heart. J Am Heart Assoc 5:
Kryshtal, Dmytro O; Dawling, Sheila; Seger, Donna et al. (2016) In Vitro Studies Indicate Intravenous Lipid Emulsion Acts as Lipid Sink in Verapamil Poisoning. J Med Toxicol 12:165-71

Showing the most recent 10 out of 74 publications