We have previously demonstrated that mesenchymal stem cells (MSC), when injected into rodent hearts following myocardial infarction (MI), enhance myocardial repair and restore cardiac function. Moreover, this protective effect is enhanced by transduction of the MSC with the cytoprotective gene Akt (Akt-MSC). Furthermore, our data showed that these cells express paracrine mediators that reduce myocardial injury. In this application we hypothesize that Akt-MSC enhance myocardial repair, in part, through its paracrine effects on angiogenesis. Indeed we have shown in our laboratory that Akt-MSCs express multiple angiogenic cytokines such as VEGF and FGF. Moreover, media collected from these cells induce endothelial cell migration and tube formation in vitro. Importantly, we have recently demonstrated that Akt-MSC induces neovascularization in the infarcted heart. Since it has been shown that angiogenic signals mobilize bone marrow derived endothelial progenitor cells (EPC) that home to the ischemic myocardium, we hypothesize that (i) Akt-MSC increase angiogenesis in the post infarct heart through paracrine mechanisms and contribute to improved myocardial repair and function (ii) Akt-MSC increase angiogenesis in part through the recruitment of bone marrow derived EPCs and (iii) Akt-MSC mediated EPC recruitment is controlled by HIF 11. To test these hypotheses, we will investigate the capability of Akt-MSCs or media collected from these cells to stimulate EPC migration and tube formation in vitro and the ability to enhance neovascularization in the post infarcted heart in vivo. We will also examine the contribution of the potential Akt-MSC derived factors towards these processes. Next we will study the role of bone marrow progenitor cells in Akt-MSC induced neovascularization in ischemic myocardium in irradiated/bone marrow transplantation models using genetically marked donor cells. Moreover we will use a "suicide" gene delivery approache to selectively eliminate the bone marrow progenitor cells which may play a role in Akt-MSC mediated neovascularization. Finally, we will investigate the role of hypoxia and Akt regulated transcription factor HIF11 as a molecular switch which may regulate Akt-MSC induced bone marrow cell recruitment to the ischemic myocardium. These studies should help elucidate the mechanism by which Akt-MSCs provide such dramatic and long term protection of the infarcted myocardium and may identify potential therapeutic approaches.

Public Health Relevance

The protective effects of adult bone marrow stem cells in the injured heart have been demonstrated, however, the exact mechanism is unknown. In this study, we will examine the effects of these bone marrow cells in the development of new blood vessels in the infarcted heart. Enhancement of new vessels in the heart will greatly aid in the treatment of coronary vessel disease and heart failure.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL073219-10
Application #
8236853
Study Section
Myocardial Ischemia and Metabolism Study Section (MIM)
Program Officer
Wong, Renee P
Project Start
2003-04-01
Project End
2014-03-31
Budget Start
2012-04-01
Budget End
2014-03-31
Support Year
10
Fiscal Year
2012
Total Cost
$386,100
Indirect Cost
$138,600
Name
Duke University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Hodgkinson, Conrad P; Gomez, Jose A; Payne, Alan J et al. (2014) Abi3bp regulates cardiac progenitor cell proliferation and differentiation. Circ Res 115:1007-16
Huang, Jing; Guo, Jian; Beigi, Farideh et al. (2014) HASF is a stem cell paracrine factor that activates PKC epsilon mediated cytoprotection. J Mol Cell Cardiol 66:157-64
Hodgkinson, Conrad P; Naidoo, Vinogran; Patti, Karl G et al. (2013) Abi3bp is a multifunctional autocrine/paracrine factor that regulates mesenchymal stem cell biology. Stem Cells 31:1669-82
Beigi, Farideh; Schmeckpeper, Jeffrey; Pow-Anpongkul, Pete et al. (2013) C3orf58, a novel paracrine protein, stimulates cardiomyocyte cell-cycle progression through the PI3K-AKT-CDK7 pathway. Circ Res 113:372-80
Wang, Hao; Gomez, Jose A; Klein, Sabine et al. (2013) Adult renal mesenchymal stem cell-like cells contribute to juxtaglomerular cell recruitment. J Am Soc Nephrol 24:1263-73
Jayawardena, Tilanthi M; Egemnazarov, Bakytbek; Finch, Elizabeth A et al. (2012) MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res 110:1465-73
Mirotsou, Maria; Jayawardena, Tilanthi M; Schmeckpeper, Jeffrey et al. (2011) Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol 50:280-9
Hodgkinson, Conrad P; Gomez, José A; Mirotsou, Maria et al. (2010) Genetic engineering of mesenchymal stem cells and its application in human disease therapy. Hum Gene Ther 21:1513-26
Huang, Jing; Zhang, Zhiping; Guo, Jian et al. (2010) Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium. Circ Res 106:1753-62
Matsushita, Kenichi; Morello, Fulvio; Wu, Yaojiong et al. (2010) Mesenchymal stem cells differentiate into renin-producing juxtaglomerular (JG)-like cells under the control of liver X receptor-alpha. J Biol Chem 285:11974-82

Showing the most recent 10 out of 39 publications