The overall objective of our research is to understand the mechanisms that regulate ion channels in the cardiovascular system. We made a novel observation that the large conductance Ca2+-activated K+ (BK) channels in smooth muscle cells from small coronary arteries of the Zucker diabetic fatty (ZDF) rats showed altered response to voltage and Ca 2+ activation. ZDF rats are an established model for the study of type 2 diabetes and their coronary vessels showed impaired endothelium-dependent and -independent relaxation. Since BK channels are the major ionic determinant in mediating vasorelaxation and are the target of endothelium-derived hyperpolarizing factors (EDHFs), altered BK channel regulation may contribute to both endothelium-dependent and -independent vascular dysfunction in type 2 diabetes. The following hypotheses will be tested: A) Regulation of vasorelaxation by arachidonic acid metabolites, which are putative EDHFs, is abnormal in type 2 diabetes. B) Abnormal EDHF-mediated vasorelaxation in type 2 diabetes is due to abnormal regulation of vascular BK channels. C) Abnormal BK channel regulation is due to structural modification of the channel. We propose the following specific aims: 1) To determine the arachidonic acid-mediated coronary vasorelaxation in control and ZDF rats, we plan to determine the contribution of the cytochrome P450 and the lipoxygenase pathways to the arachidonic acid effects using pharmacological approaches and microelectrode measurements of membrane potential in isolated coronary vessels. 2) To determine the alterations in the regulation of BK channels in ZDF rats, we will determine the BK channel properties including channel density, I-V relationships, V1/2, Ca 2+ EC50, response to channel activators, and channel kinetics using the whole-cell and single-channel electrophysiological approaches. 3) To determine the molecular mechanisms of the BK channel defects, we will explore three plausible mechanisms, namely activation of protein kinase C, expression of channel variants, and functional uncoupling with the channel beta subunit using biochemical and molecular approaches. This study may help us to better understand the regulation of vascular BK channels and to delineate the role of EDHF in the regulation of coronary physiology in diabetes. Our results may provide important mechanistic insight into the pathogenesis of abnormal vasoreactivity associated with type 2 diabetes and may lead to the development of new approaches in the prevention and treatment of cardiovascular complications in patients with type 2 diabetes.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL074180-03
Application #
6894057
Study Section
Cardiovascular and Renal Study Section (CVB)
Program Officer
Rabadan-Diehl, Cristina
Project Start
2003-07-01
Project End
2007-06-30
Budget Start
2005-07-01
Budget End
2006-06-30
Support Year
3
Fiscal Year
2005
Total Cost
$328,500
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Lu, Tong; Wang, Xiao-Li; Chai, Qiang et al. (2017) Role of the endothelial caveolae microdomain in shear stress-mediated coronary vasorelaxation. J Biol Chem 292:19013-19023
Lu, Tong; Sun, Xiaojing; Li, Yong et al. (2017) Role of Nrf2 Signaling in the Regulation of Vascular BK Channel ?1 Subunit Expression and BK Channel Function in High-Fat Diet-Induced Diabetic Mice. Diabetes 66:2681-2690
Ling, Tian-You; Wang, Xiao-Li; Chai, Qiang et al. (2017) Regulation of cardiac CACNB2 by microRNA-499: Potential role in atrial fibrillation. BBA Clin 7:78-84
Yi, Fu; Ling, Tian-You; Lu, Tong et al. (2015) Down-regulation of the small conductance calcium-activated potassium channels in diabetic mouse atria. J Biol Chem 290:7016-26
Chai, Qiang; Lu, Tong; Wang, Xaio-Li et al. (2015) Hydrogen sulfide impairs shear stress-induced vasodilation in mouse coronary arteries. Pflugers Arch 467:329-40
Yi, Fu; Wang, Huan; Chai, Qiang et al. (2014) Regulation of large conductance Ca2+-activated K+ (BK) channel ?1 subunit expression by muscle RING finger protein 1 in diabetic vessels. J Biol Chem 289:10853-64
Chai, Qiang; Wang, Xiao-Li; Zeldin, Darryl C et al. (2013) Role of caveolae in shear stress-mediated endothelium-dependent dilation in coronary arteries. Cardiovasc Res 100:151-9
Wang, Xiao-Li; Ling, Tian-You; Charlesworth, M Cristine et al. (2013) Autoimmunoreactive IgGs against cardiac lipid raft-associated proteins in patients with postural orthostatic tachycardia syndrome. Transl Res 162:34-44
Ling, Tian-You; Wang, Xiao-Li; Chai, Qiang et al. (2013) Regulation of the SK3 channel by microRNA-499--potential role in atrial fibrillation. Heart Rhythm 10:1001-9
Wang, Xiao-Li; Chai, Qiang; Charlesworth, M Cristine et al. (2012) Autoimmunoreactive IgGs from patients with postural orthostatic tachycardia syndrome. Proteomics Clin Appl 6:615-25

Showing the most recent 10 out of 24 publications