The overall goal of this project is to understand the mechanism of endocardial endothelial-myocyte (E-M) dysfunction in chronic heart failure. Studies from the previous funding period suggested that endocardial endothelial dysfunction is associated with increased oxidized-matrix accumulation (fibrosis), activation of latent resident myocardial matrix metalloproteinases (MMPs) and inactivation of cardiac tissue inhibitor of metalloproteinase (TIMP-4) secondary to oxidative and proteolytic stresses. Administration of TIMP-4 ameliorated both the formation of reactive oxygen species (ROS, oxidative stress) and MMP activation (proteolytic stress). In addition, we discovered the induction of proteinase activated receptor-1 (PAR-1). However, the role of PAR-1 in fibrosis and E-M uncoupling remains poorly defined. H2S gas is the most potent antioxidant in mitigating oxidative stress and recent studies have implicated a cardioprotective role of H2S. The central hypothesis of this competitive renewal proposal is that during chronic heart failure the oxidative and proteolytic stresses induce PAR-1, leading to generate mitochondrial (mt) ROS and reactive nitrogen species (RNS) and mitochondrial nitric oxide synthase (mtNOS), respectively, thus activating the latent resident cardiac MMPs. These events disrupt the MMP/TIMP axis, causing fibrosis between endothelium and myocyte. Treatment with H2S alleviates fibrosis and mitigates E-M uncoupling. Therefore, the specific aims of this proposal are: #1: To determine whether chronic left ventricle (LV) volume overload causes mitochondrial oxidative stress (ROS and RNS) by inducing NADPH oxidase (p47 subunit), mtNOS and PAR-1, and H2S alleviates mitochondrial oxidative stress. #2: To determine whether chronic LV volume overload causes cardiac fibrosis by increasing collagen/elastin ratio, MMP-2, -9, -13, TIMP-1, -3, decreasing TIMP-4, and inducing PAR-1, and H2S mitigates cardiac fibrosis. #3: To determine whether chronic LV volume overload causes E-M dysfunction and LVH by inducing PAR-1 and H2S decreases E-M uncoupling. Chronic heart failure will be created by LV volume overload by aorta-venacava fistula (AVF) in wild type (WT), PAR-1-/+, iNOS-/-, MMP-9-/-, TIMP-3-/-, and TIMP-4++/++ mice, treated with or without NaHS, a H2S donor.

Public Health Relevance

The myocyte contraction and relaxation are synchronized only when myocytes are connected by extracellular matrix (ECM). We coined the term endothelial-myocyte (E-M) coupling because endocardial endothelial (EE) cells derived cardio-active agents modulate myocyte contraction in systole and relaxation in diastole. The endothelium in the heart is the least studied system, because unlike conduit arteries, the endocardial endothelium is buried in the muscle and it is difficult to separate its role in myocyte function. We developed a new technique, """"""""cardiac rings,"""""""" in which endothelium dependent or independent cardiac contraction and relaxation can be examined separately in LV and RV. There are two novel aspects of this proposal: 1) the proposed experiments will demonstrate the role of PAR-1 in the underlying mechanism of fibrosis and endothelial-myocyte uncoupling in heart failure;and 2) will have clinical translational ramifications of H2S in treating diastolic heart failure.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-CVS-D (03))
Program Officer
Schwartz, Lisa
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Louisville
Schools of Medicine
United States
Zip Code
Theilen, Nicholas T; Kunkel, George H; Tyagi, Suresh C (2017) The Role of Exercise and TFAM in Preventing Skeletal Muscle Atrophy. J Cell Physiol 232:2348-2358
Kalani, Anuradha; Chaturvedi, Pankaj; Maldonado, Claudio et al. (2017) Dementia-like pathology in type-2 diabetes: A novel microRNA mechanism. Mol Cell Neurosci 80:58-65
Muradashvili, Nino; Tyagi, Suresh C; Lominadze, David (2017) Localization of Fibrinogen in the Vasculo-Astrocyte Interface after Cortical Contusion Injury in Mice. Brain Sci 7:
Veeranki, Sudhakar; Gandhapudi, Siva K; Tyagi, Suresh C (2017) Interactions of hyperhomocysteinemia and T cell immunity in causation of hypertension. Can J Physiol Pharmacol 95:239-246
Muradashvili, Nino; Tyagi, Reeta; Tyagi, Neetu et al. (2016) Cerebrovascular disorders caused by hyperfibrinogenaemia. J Physiol 594:5941-5957
Chaturvedi, Pankaj; Kamat, Pradip K; Kalani, Anuradha et al. (2016) High Methionine Diet Poses Cardiac Threat: A Molecular Insight. J Cell Physiol 231:1554-61
Chernyavskiy, Ilya; Veeranki, Sudhakar; Sen, Utpal et al. (2016) Atherogenesis: hyperhomocysteinemia interactions with LDL, macrophage function, paraoxonase 1, and exercise. Ann N Y Acad Sci 1363:138-54
Kunkel, George H; Chaturvedi, Pankaj; Tyagi, Suresh C (2016) Mitochondrial pathways to cardiac recovery: TFAM. Heart Fail Rev 21:499-517
Kalani, Anuradha; Chaturvedi, Pankaj; Kamat, Pradip K et al. (2016) Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. Int J Biochem Cell Biol 79:360-369
Veeranki, Sudhakar; Givvimani, Srikanth; Kundu, Sourav et al. (2016) Moderate intensity exercise prevents diabetic cardiomyopathy associated contractile dysfunction through restoration of mitochondrial function and connexin 43 levels in db/db mice. J Mol Cell Cardiol 92:163-173

Showing the most recent 10 out of 124 publications