The formation of arterial and venous (AV) branches must be exquisitely coordinated to generate proper AV circuitry essential for vascular function. The mechanism of AV coordination particularly that between paired, parallel arteries and veins is poorly understood. Our long-term objective is to elucidate the genetic program of mammalian AV circuitry. In the previous funding period, we reported that luminal sizes of the developing dorsal aorta (DA) and cardinal vein (CV) are synchronized. Notch signaling controls arterial specification and the allocation of both arterial and venous endothelial cells (ECs) into their respective vessels, thereby balancing the sizes of the developing DA and CV. We have also obtained preliminary data in mice suggesting that DA and CV formation is not initiated by pre-determined arterial and venous ECs, as previously thought. Instead, our work suggests a new step-wise model of mammalian parallel AV pair morphogenesis: the primitive unspecified artery assembles prior to the vein;followed by a phase of mixed AV identities in both vessels;finally the mixed ECs are segregated into uniformly-specified vessels with coordinated sizes.
The specific aims of this grant are designed to test this new paradigm and to define the cellular mechanisms mediated by AV signaling in the morphogenesis of parallel AV pairs in mice. Our strategy is to take a cross- disciplinary approach including cutting-edge mouse genetics, cell lineage fate mapping, and imaging technologies. We recently built a custom 2-photon excited fluorescence microscope that is capable of imaging vasculature 1000 5m deep in living mouse tissue, achieving unprecedented resolution of previously inaccessible vascular structures.
Aim 1 Examine Vascular Endothelial Growth Factor (VEGF)-mediated cell differentiation as a mechanism underlying heterogeneous arterial- and venous- fated ECs in the primordial DA (pDA) and CV (pCV).
Aim 2 Examine cell segregation as a mechanism to sort venous-fated ECs in the pDA to the pCV.
Aim 3 Determine the role of Notch signaling in coordinating the development of parallel artery and vein pairs.
Aim 4 Determine the requirement of endothelial Notch1 and Coup-TFII in AV specification of adult parallel artery and vein pairs. Successful completion of this study will conceptually advance our knowledge of the morphogenesis and maintenance of parallel AV pairs, providing evidence regarding the origins of arteries and veins. Basic knowledge of the molecular mechanism of AV specification will inspire novel approaches to study blood vessel regeneration and vein graft engineering in disease settings. The combination of 2-photon high-resolution imaging with cutting-edge cell lineage tracing in living mouse embryos will be a major technological innovation for the field of mammalian vascular development at large.

Public Health Relevance

Our study aims to reveal the role of the Notch signaling pathway in vascular differentiation and maintenance and illuminate potential molecular mechanisms underlying these processes. In the future, this basic understanding of Notch in pre- and post-natal mammalian vascular function will guide investigations into its function in vessel regeneration under pathological conditions, such as heart attack, stroke, and other ischemic diseases. Ultimately, our understanding of the Notch pathway may lead to the identification of novel drug targets and therapeutic interventions for cardiovascular diseases.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Cardiovascular Differentiation and Development Study Section (CDD)
Program Officer
Reid, Diane M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
Schools of Medicine
San Francisco
United States
Zip Code
Lin, Yuankai; Jiang, Weiya; Ng, Jennifer et al. (2014) Endothelial ephrin-B2 is essential for arterial vasodilation in mice. Microcirculation 21:578-86
Lindskog, Henrik; Kim, Yung Hae; Jelin, Eric B et al. (2014) Molecular identification of venous progenitors in the dorsal aorta reveals an aortic origin for the cardinal vein in mammals. Development 141:1120-8
Nielsen, Corinne M; Cuervo, Henar; Ding, Vivianne W et al. (2014) Deletion of Rbpj from postnatal endothelium leads to abnormal arteriovenous shunting in mice. Development 141:3782-92
Murphy, Patrick A; Kim, Tyson N; Lu, Gloria et al. (2012) Notch4 normalization reduces blood vessel size in arteriovenous malformations. Sci Transl Med 4:117ra8
Miniati, Doug; Jelin, Eric B; Ng, Jennifer et al. (2010) Constitutively active endothelial Notch4 causes lung arteriovenous shunts in mice. Am J Physiol Lung Cell Mol Physiol 298:L169-77
Murphy, Patrick A; Lam, Michael T Y; Wu, Xiaoqing et al. (2008) Endothelial Notch4 signaling induces hallmarks of brain arteriovenous malformations in mice. Proc Natl Acad Sci U S A 105:10901-6
Carlson, Timothy R; Hu, Huiqing; Braren, Rickmer et al. (2008) Cell-autonomous requirement for beta1 integrin in endothelial cell adhesion, migration and survival during angiogenesis in mice. Development 135:2193-202
He, Chen; Hu, Huiqing; Braren, Rickmer et al. (2008) c-myc in the hematopoietic lineage is crucial for its angiogenic function in the mouse embryo. Development 135:2467-77
Kim, Yung Hae; Hu, Huiqing; Guevara-Gallardo, Salvador et al. (2008) Artery and vein size is balanced by Notch and ephrin B2/EphB4 during angiogenesis. Development 135:3755-64
Braren, Rickmer; Hu, Huiqing; Kim, Yung Hae et al. (2006) Endothelial FAK is essential for vascular network stability, cell survival, and lamellipodial formation. J Cell Biol 172:151-62

Showing the most recent 10 out of 11 publications