Approximately 25% of myocardial infarction (MI) patients progress to develop congestive heart failure, which has a 50% 5-year mortality rate. The goal of this project is to understand post-MI roles of the macrophage by establishing and validating an in silico computational model of the temporal evolution of macrophage polarization. Our preliminary results demonstrate that macrophages proceed through a series of polarization profiles over the first 7 days post-MI and that modifying macrophage polarization can alter remodeling of the left ventricle (LV). We hypothesize that macrophages undergo a temporal phenotype evolution to coordinate the post-MI LV remodeling phenotype.
Our specific aims are: 1) construct an in silico computational model that simulates macrophage polarization patterns over the post-MI time course; 2) perturb endogenous IL-1 signaling pathway to evaluate the system and optimize model robustness; and 3) examine exogenous influences to evaluate model predictability. The innovation of this proposal lies in both the concept that macrophages regulate remodeling as a continuum of phenotypes and that integration of experimental and computational approaches will allow us to establish a predictive computational tool. The potential outcome of these studies will be 1) the development of a computational tool to simulate macrophage polarization post-MI; 2) the identification of macrophage polarization markers that predict LV remodeling outcomes; and 3) recognition of key inflammatory mechanisms that can be therapeutically modulated to regulate macrophage polarization.

Public Health Relevance

Patients who have had a heart attack are at high risk to develop congestive heart failure, and the 5 year mortality rate for heart failure is 50%. The macrophage is a major cell that coordinates wound healing in the heart after a heart attack, and modifying the macrophage response may improve outcomes. The main objective of this grant is to construct a simulation of the macrophage response to a heart attack, which may help us to develop therapies that prevent the development of heart failure.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL075360-15
Application #
9472951
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Adhikari, Bishow B
Project Start
2004-07-01
Project End
2019-05-31
Budget Start
2018-06-01
Budget End
2019-05-31
Support Year
15
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Mississippi Medical Center
Department
Physiology
Type
Schools of Medicine
DUNS #
928824473
City
Jackson
State
MS
Country
United States
Zip Code
39216
Lindsey, Merry L; Gray, Gillian A; Wood, Susan K et al. (2018) Statistical considerations in reporting cardiovascular research. Am J Physiol Heart Circ Physiol 315:H303-H313
Mouton, Alan J; DeLeon-Pennell, Kristine Y; Rivera Gonzalez, Osvaldo J et al. (2018) Mapping macrophage polarization over the myocardial infarction time continuum. Basic Res Cardiol 113:26
Lindsey, Merry L; Jung, Mira; Yabluchanskiy, Andriy et al. (2018) Exogenous CXCL4 Infusion Inhibits Macrophage Phagocytosis by Limiting CD36 Signaling to Enhance Post-myocardial Infarction Cardiac Dilation and Mortality. Cardiovasc Res :
Lindsey, Merry L (2018) Reg-ulating macrophage infiltration to alter wound healing following myocardial infarction. Cardiovasc Res 114:1571-1572
DeLeon-Pennell, Kristine Y; Mouton, Alan J; Ero, Osasere K et al. (2018) LXR/RXR signaling and neutrophil phenotype following myocardial infarction classify sex differences in remodeling. Basic Res Cardiol 113:40
Lindsey, Merry L; Kassiri, Zamaneh; Virag, Jitka A I et al. (2018) Guidelines for measuring cardiac physiology in mice. Am J Physiol Heart Circ Physiol 314:H733-H752
Lindsey, Merry L; Jung, Mira; Hall, Michael E et al. (2018) Proteomic analysis of the cardiac extracellular matrix: clinical research applications. Expert Rev Proteomics 15:105-112
Mouton, Alan J; Rivera Gonzalez, Osvaldo J; Kaminski, Amanda R et al. (2018) Matrix metalloproteinase-12 as an endogenous resolution promoting factor following myocardial infarction. Pharmacol Res 137:252-258
DeLeon-Pennell, Kristine Y; Iyer, Rugmani Padmanabhan; Ma, Yonggang et al. (2018) The Mouse Heart Attack Research Tool 1.0 database. Am J Physiol Heart Circ Physiol 315:H522-H530
Bloksgaard, Maria; Lindsey, Merry L; Martinez-Lemus, Luis A (2018) Extracellular Matrix in Cardiovascular Pathophysiology. Am J Physiol Heart Circ Physiol :

Showing the most recent 10 out of 169 publications