Cigarette smoking is the major environmental risk factor for chronic obstructive pulmonary disease (COPD);however, the development of COPD is markedly variable among smokers, and genetic factors likely influence this variability. Candidate gene association studies have identified several potential COPD susceptibility genes, and genome-wide association studies promise to confirm multiple COPD susceptibility loci. However, association studies typically do not identify the functional variants in associated genes. Moreover, rare variants may contribute to COPD susceptibility, and association studies of attainable sample sizes cannot assess their impact. In the Boston Early-Onset COPD Study, positional cloning efforts have localized several potential COPD susceptibility loci, and rare variant analysis in this study has identified a potentially functional variant in elastin which may influence COPD susceptibility. In order to identify both rare and common genetic variants influencing COPD susceptibility, we will perform dense resequencing of 10 candidate genes identified from previous and ongoing genetic association studies. To characterize the genetic variation of these candidate genes comprehensively, resequencing of the complete genomic sequence of these 10 genes will be performed in three sets of case-control subjects: A) 180 severe, early-onset COPD probands and 180 of their smoking relatives with normal FEV1 values;b) 200 National Emphysema Treatment Trial (NETT) COPD cases and 200 Normative Aging Study (NAS) smoking control subjects;and 200 International COPD Genetics Network (ICGN) COPD cases and 200 ICGN smoking control subjects. Rare variant analysis will be performed by comparing the frequency of non-synonymous SNPs in COPD cases and controls. Common variants will be tested for genetic association in five populations: A) NETT cases and NAS controls;b) two sets of Boston Early-Onset COPD Study families;c) ICGN families;and d) African-American COPD cases and controls. Potentially functional rare and common variants will be tested for their effects on gene expression in lymphoblastoid cell lines of early-onset COPD probands by comparing heteronuclear RNA (pre- mRNA) levels across genotypes and by performing allelic imbalance expression analysis. If novel COPD susceptibility genes can be found, new pharmacological interventions for COPD could be developed, improved understanding of COPD pathophysiology could result, and susceptible individuals could be identified.

Public Health Relevance

Chronic obstructive pulmonary disease (COPD) is likely influenced by genetic factors, but the only proven genetic determinant of COPD is severe alpha 1-antitrypsin (AAT) deficiency. In order to identify novel common and rare genetic determinants of COPD, resequencing potential susceptibility genes in large numbers of COPD and control subjects will be performed. Genetic association studies of common variants will be undertaken in multiple populations, and functional studies of identified variants will be performed.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Respiratory Integrative Biology and Translational Research Study Section (RIBT)
Program Officer
Postow, Lisa
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brigham and Women's Hospital
United States
Zip Code
Chu, Jen-hwa; Hersh, Craig P; Castaldi, Peter J et al. (2014) Analyzing networks of phenotypes in complex diseases: methodology and applications in COPD. BMC Syst Biol 8:78
Castaldi, Peter J; Cho, Michael H; San José Estépar, Raúl et al. (2014) Genome-wide association identifies regulatory Loci associated with distinct local histogram emphysema patterns. Am J Respir Crit Care Med 190:399-409
Silverman, E K; Loscalzo, J (2013) Developing new drug treatments in the era of network medicine. Clin Pharmacol Ther 93:26-8
Zhou, Xiaobo; Qiu, Weiliang; Sathirapongsasuti, J Fah et al. (2013) Gene expression analysis uncovers novel hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells. Genomics 101:263-72
Siedlinski, Mateusz; Tingley, Dustin; Lipman, Peter J et al. (2013) Dissecting direct and indirect genetic effects on chronic obstructive pulmonary disease (COPD) susceptibility. Hum Genet 132:431-41
Zhou, Xiaobo; Baron, Rebecca M; Hardin, Megan et al. (2012) Identification of a chronic obstructive pulmonary disease genetic determinant that regulates HHIP. Hum Mol Genet 21:1325-35
Cho, Michael H; Castaldi, Peter J; Wan, Emily S et al. (2012) A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13. Hum Mol Genet 21:947-57
Kim, Woo Jin; Wood, Alice M; Barker, Alan F et al. (2012) Association of IREB2 and CHRNA3 polymorphisms with airflow obstruction in severe alpha-1 antitrypsin deficiency. Respir Res 13:16
Hersh, Craig P; Silverman, Edwin K; Gascon, Jody et al. (2011) SOX5 is a candidate gene for chronic obstructive pulmonary disease susceptibility and is necessary for lung development. Am J Respir Crit Care Med 183:1482-9
Kim, W J; Hoffman, E; Reilly, J et al. (2011) Association of COPD candidate genes with computed tomography emphysema and airway phenotypes in severe COPD. Eur Respir J 37:39-43

Showing the most recent 10 out of 52 publications