Obstructive sleep apnea (OSA) leads to high cardiovascular mortality, which has been attributed to metabolic abnormalities induced by chronic intermittent hypoxia (IH). We have developed a mouse model of chronic IH, which mimics the oxygen profile in human OSA, and have shown that IH causes dyslipidemia, hepatic steatosis and insulin resistance. We have also shown that IH leads to metabolic dysfunction by stimulating a key hepatic enzyme of lipid biosynthesis, stearoyl Coenzyme A desaturase 1 (SCD-1). We accumulated evidence allowing to formulate our main hypothesis that chronic IH causes dyslipidemia and hepatic steatosis by up-regulating SCD-1 via two major pathways, (1) induction of hepatic hypoxia inducible factor 1 (HIF-1) with downstream activation of key factors of lipid biosynthesis, sterol regulatory element binding protein 1c (SREBP-1c), liver X receptors (LXRs) and peroxisome proliferator-activated receptor gamma (PPAR?), (2) activation of the sympathetic nervous system (SNS) resulting in increased hepatic glucose output and up-regulation of carbohydrate response element-binding protein ChREBP.
In Specific Aim #1 we will examine the role of HIF-1 in metabolic dysfunction during IH. We propose that IH up-regulates SCD-1 via HIF-1 and therefore (A) IH-induced increase in hepatic SCD-1, dyslipidemia and hepatic steatosis will be attenuated in mice with HIF-1? deficient livers;(B) hypoxic up-regulation of SCD-1 will be abolished by HIF-1? deficiency in isolated hepatocytes;(C) constitutive expression of HIF-1? in mouse hepatocytes will induce SCD-1;(D) hypoxia will induce the SCD-1 promoter, this induction will be abolished by HIF-1? deficiency, and constitutively active HIF-1? will be sufficient to drive promoter activity.
In Specific Aim #2, we will determine pathways downstream of HIF-1, by which hypoxia induce SCD-1 in cultured hepatocytes. We propose that HIF-1 up-regulates SCD-1 via increased activity of LXR, PPAR? and SREBP-1c and therefore (A) SCD-1 up-regulation by hypoxia or by constitutive expression of HIF-1? will be attenuated by deficiency of LXR?/?, PPAR? and SREBP-1c and abolished by the combined deficiency of these transcription factors, (B) induction of the SCD-1 promoter by hypoxia or by constitutive expression of HIF- 1? will be attenuated by deficiency of LXR?/?, PPAR? and SREBP-1c and abolished by the combined deficiency of these transcription factors.
In Specific Aim #3, we will explore the role of ChREBP in up- regulation of hepatic SCD-1 during IH. We propose that IH acts through the SNS to induce ChREBP, which up-regulates SCD-1 leading to dyslipidemia and hepatic steatosis. We hypothesize that (A) induction of hepatic ChREBP by IH will be abolished and up-regulation of SCD-1 will be attenuated by the blockade of the SNS;(B) ChREBP deficiency will attenuate chronic IH-induced increases in hepatic SCD- 1, dyslipidemia and hepatic steatosis.

Public Health Relevance

Obstructive sleep apnea increases risk of heart attack, stroke, and premature death. We hypothesize that increased cardiovascular risk in sleep apnea is related to specific molecular mechanisms, which induce elevation of serum lipids and cause fatty liver, diabetes, and atherosclerosis. We propose to use a mouse model of sleep apnea to explore these mechanisms and identify novel therapeutic targets, which may improve outcomes in patients with sleep apnea and the cardiovascular disease.

National Institute of Health (NIH)
Research Project (R01)
Project #
Application #
Study Section
Integrative Nutrition and Metabolic Processes Study Section (INMP)
Program Officer
Twery, Michael
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Shin, Mi-Kyung; Yao, Qiaoling; Jun, Jonathan C et al. (2014) Carotid body denervation prevents fasting hyperglycemia during chronic intermittent hypoxia. J Appl Physiol (1985) 117:765-76
Nichols, C Blake; Chang, Chia-Wei; Ferrero, Maura et al. (2014) ?-adrenergic signaling inhibits Gq-dependent protein kinase D activation by preventing protein kinase D translocation. Circ Res 114:1398-409
Ayas, Najib T; Hirsch, Allen A J; Laher, Ismail et al. (2014) New frontiers in obstructive sleep apnoea. Clin Sci (Lond) 127:209-16
Shin, Mi-Kyung; Han, Woobum; Bevans-Fonti, Shannon et al. (2014) The effect of adrenal medullectomy on metabolic responses to chronic intermittent hypoxia. Respir Physiol Neurobiol 203:60-7
Jun, Jonathan C; Shin, Mi-Kyung; Yao, Qiaoling et al. (2013) Thermoneutrality modifies the impact of hypoxia on lipid metabolism. Am J Physiol Endocrinol Metab 304:E424-35
Mesarwi, Omar; Polak, Jan; Jun, Jonathan et al. (2013) Sleep disorders and the development of insulin resistance and obesity. Endocrinol Metab Clin North Am 42:617-34
Yao, Qiaoling; Shin, Mi-Kyung; Jun, Jonathan C et al. (2013) Effect of chronic intermittent hypoxia on triglyceride uptake in different tissues. J Lipid Res 54:1058-65
Aggarwal, Neil R; D'Alessio, Franco R; Eto, Yoshiki et al. (2013) Macrophage A2A adenosinergic receptor modulates oxygen-induced augmentation of murine lung injury. Am J Respir Cell Mol Biol 48:635-46
Drager, Luciano F; Yao, Qiaoling; Hernandez, Karen L et al. (2013) Chronic intermittent hypoxia induces atherosclerosis via activation of adipose angiopoietin-like 4. Am J Respir Crit Care Med 188:240-8
Drager, Luciano F; Li, Jianguo; Shin, Mi-Kyung et al. (2012) Intermittent hypoxia inhibits clearance of triglyceride-rich lipoproteins and inactivates adipose lipoprotein lipase in a mouse model of sleep apnoea. Eur Heart J 33:783-90

Showing the most recent 10 out of 40 publications