Dilated cardiomyopathy (DCM) is a precursor of systolic heart failure (HF), the leading cause of death and indication for cardiac transplantation in the U.S. DCM has many etiologies, including genetic predisposition. Although over 300 mutations in 60 different DCM genes have been identified, these account for a small fraction of all DCM cases. Because epidemiologic studies indicate that genetics are a major contributing factor to DCM, we suggest that new strategies are needed to define the human DCM mutations. Previously defined DCM mutations alter proteins with disparate functions, implying that many different pathways can lead to HF. To uncover the relationship between DCM mutations and pathways we will define transcriptional responses in to defined gene mutations in ventricular tissues. These studies may improve gene-based diagnosis suggest interventions that ultimately limit the progression of DCM to HF. To comprehensively define the genetic architecture of DCM we will harness new technologies and methodologies. Our approach capitalizes on a low cost method to capture and analyze large numbers of known DCM genes and harnesses next generation sequencing platforms to interrogate these. We provide preliminary data of the success of this approach. These data also indicate a distinct advantage of the proposed approach over traditional strategies, in moderate sized insertions and deletions, indels, which have previously escaped detection, were found. With continued improvement of our analysis pipeline to detect indels, we expect that resequencing of known DCM genes will reveal many more """"""""missed"""""""" mutations. After this initial screen, we will harness whole exome sequencing to discovery novel DCM genes. Together these strategies will define the spectrum of DCM genes, and will the contribution of different gene mutations to the burden of DCM, information that will inform our understanding of disease mechanisms. Next generation sequencing will also be harnessed to interrogate responses activated by gene mutations. Using this platform, we devised a strategy to interrogate RNA levels and structure. We will use this approach to characterize the left ventricular transcriptome in patients with defined mutations. By incorporating pathway analyses we expect to define the signatures associated with pathways activated by different DCM genes. We have assembled a large cohort of samples with clinical data and an investigative team with extensive experience in DCM and human molecular genetics for these studies. To define the genetic architecture and pathways of DCM we propose the following aims: 1) Subgenome-capture and sequence DCM genes in 1500 DCM cases and 3000 controls;2) Discover novel DCM genes by whole exome sequencing of mutation-negative familial DCM cases;3) Assess the role of somatic mutation in mutation-negative sporadic DCM cases;and 4) Define RNA responses to DCM mutations in experimental models and human LV tissues. 1

Public Health Relevance

Dilated cardiomyopathy is a heart disease in which the chambers of the heart are enlarged and the heart's ability to pump blood is significantly diminished. Dilated cardiomyopathy leads to heart failure, the leading cause of death in the United States. About 30% of unexplained dilated cardiomyopathy is inherited. We propose in this application to identify the contribution of gene deletion and insertion to dilated cardiomyopathy and hence more accurately identify dilated cardiomyopathy causing gene. We will use this information to define the mechanisms by which gene mutation leads to disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL080494-08
Application #
8656729
Study Section
Cardiac Contractility, Hypertrophy, and Failure Study Section (CCHF)
Program Officer
Evans, Frank
Project Start
2005-04-01
Project End
2015-04-30
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
8
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Harvard Medical School
Department
Genetics
Type
Schools of Medicine
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02115
Ito, Kaoru; Patel, Parth N; Gorham, Joshua M et al. (2017) Identification of pathogenic gene mutations in LMNA and MYBPC3 that alter RNA splicing. Proc Natl Acad Sci U S A 114:7689-7694
Eyckmans, Jeroen; Chen, Christopher S (2017) 3D culture models of tissues under tension. J Cell Sci 130:63-70
Schafer, Sebastian; de Marvao, Antonio; Adami, Eleonora et al. (2017) Titin-truncating variants affect heart function in disease cohorts and the general population. Nat Genet 49:46-53
Burke, Michael A; Chang, Stephen; Wakimoto, Hiroko et al. (2016) Molecular profiling of dilated cardiomyopathy that progresses to heart failure. JCI Insight 1:
Hinson, J Travis; Chopra, Anant; Lowe, Andre et al. (2016) Integrative Analysis of PRKAG2 Cardiomyopathy iPS and Microtissue Models Identifies AMPK as a Regulator of Metabolism, Survival, and Fibrosis. Cell Rep 17:3292-3304
Ware, James S; Li, Jian; Mazaika, Erica et al. (2016) Shared Genetic Predisposition in Peripartum and Dilated Cardiomyopathies. N Engl J Med 374:233-41
Eminaga, Seda; Teekakirikul, Polakit; Seidman, Christine E et al. (2016) Detection of Cell Proliferation Markers by Immunofluorescence Staining and Microscopy Imaging in Paraffin-Embedded Tissue Sections. Curr Protoc Mol Biol 115:14.25.1-14.25.14
Hinson, John T; Chopra, Anant; Nafissi, Navid et al. (2015) HEART DISEASE. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science 349:982-6
Huang, Zhan-Peng; Kataoka, Masaharu; Chen, Jinghai et al. (2015) Cardiomyocyte-enriched protein CIP protects against pathophysiological stresses and regulates cardiac homeostasis. J Clin Invest 125:4122-34
Jiang, Jianming; Burgon, Patrick G; Wakimoto, Hiroko et al. (2015) Cardiac myosin binding protein C regulates postnatal myocyte cytokinesis. Proc Natl Acad Sci U S A 112:9046-51

Showing the most recent 10 out of 41 publications