Over the past two decades, reactive oxygen species have been implicated as critical mediators of oxidative processes and disease mechanisms under physiological conditions. Therefore, it is of critical importance to have a direct technique capable of identifying free radicals at their site of formation in systems ranging from chemical to enzymatic reactions, and cellular to in vivo systems so that the mechanisms and processes underlying the oxidative damage in biological systems can be understood. The overall objective of this proposal is to develop novel spin traps with improved properties that can be applied to study oxidative stress in biological systems using electron paramagnetic resonance (EPR) spectroscopy. The specific monitoring of the formation of biologically relevant reactive oxygen species such as ?OH, O2?-, ROO? or RS? is achieved by the distinctive EPR spectral profile they give after addition to spin traps to form a persistent radical adduct. The most commonly used spin traps, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO) and 5-ethoxycarbonyl-5-methyl-1-pyrroline N-oxide (EMPO), are limited by their poor efficiency of trapping superoxide radical anion, short half-life of the radical adduct formed in biological milieu, cytotoxicity, sensitivity and target specificity.
Our aim i s to overcome such limitations by employing an interdisciplinary approach in spin trap development that encompasses theoretical prediction, organic synthesis, kinetic determination, toxicity, and ultimately, their experimental application to identify and detect free radical formation in in vitro and in vivo systems at their site of formation. The synergistic application of these technologies will provide an optimal strategy to provide new materials which can be effective in probing the role of reactive oxygen species in biological mechanisms. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL081248-01A2
Application #
7208380
Study Section
Synthetic and Biological Chemistry A Study Section (SBCA)
Program Officer
Applebaum-Bowden, Deborah
Project Start
2007-04-06
Project End
2011-03-31
Budget Start
2007-04-06
Budget End
2008-03-31
Support Year
1
Fiscal Year
2007
Total Cost
$262,500
Indirect Cost
Name
Ohio State University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Headley, Colwyn A; DiSilvestro, David; Bryant, Kelsey E et al. (2016) Nitrones reverse hyperglycemia-induced endothelial dysfunction in bovine aortic endothelial cells. Biochem Pharmacol 104:108-17
Das, Amlan; Gopalakrishnan, Bhavani; Druhan, Lawrence J et al. (2014) Reversal of SIN-1-induced eNOS dysfunction by the spin trap, DMPO, in bovine aortic endothelial cells via eNOS phosphorylation. Br J Pharmacol 171:2321-34
Rosselin, Marie; Choteau, Fanny; ZĂ©amari, Kamal et al. (2014) Reactivities of substituted ?-phenyl-N-tert-butyl nitrones. J Org Chem 79:6615-26
Song, Yuguang; Liu, Yangping; Hemann, Craig et al. (2013) Esterified dendritic TAM radicals with very high stability and enhanced oxygen sensitivity. J Org Chem 78:1371-6
Liu, Yangping; Villamena, Frederick A; Rockenbauer, Antal et al. (2013) Structural factors controlling the spin-spin exchange coupling: EPR spectroscopic studies of highly asymmetric trityl-nitroxide biradicals. J Am Chem Soc 135:2350-6
Nash, Kevin M; Rockenbauer, Antal; Villamena, Frederick A (2012) Reactive nitrogen species reactivities with nitrones: theoretical and experimental studies. Chem Res Toxicol 25:1581-97
Villamena, Frederick A; Das, Amlan; Nash, Kevin M (2012) Potential implication of the chemical properties and bioactivity of nitrone spin traps for therapeutics. Future Med Chem 4:1171-207
Zamora, Pedro L; Villamena, Frederick A (2012) Theoretical and experimental studies of the spin trapping of inorganic radicals by 5,5-dimethyl-1-pyrroline N-oxide (DMPO). 3. Sulfur dioxide, sulfite, and sulfate radical anions. J Phys Chem A 116:7210-8
Traynham, Christopher J; Roof, Steve R; Wang, Honglan et al. (2012) Diesterified nitrone rescues nitroso-redox levels and increases myocyte contraction via increased SR Ca(2+) handling. PLoS One 7:e52005
Liu, Yangping; Song, Yuguang; De Pascali, Francesco et al. (2012) Tetrathiatriarylmethyl radical with a single aromatic hydrogen as a highly sensitive and specific superoxide probe. Free Radic Biol Med 53:2081-2091

Showing the most recent 10 out of 37 publications