Major progress has been made in the understanding and translational advancement of cell-based therapeutics for chronic ischemic heart disease, a condition affecting approximately 5 million Americans. We have used the first funding period of this award to develop sophisticated porcine models of ischemic cardiomyopathy characterized by progressive ventricular remodeling. Using this model we have tested several strategies for cell-based therapeutics, gleaned major mechanistic insights, and developed sufficient preclinical data to be able to initiate clinical trials. Importantly, we showed that engraftment and differentiation of mesenchymal stem cells (MSCs) in the injured porcine heart was accompanied by 1) gap junction formation with host cells, 2) stimulation of endogenous cardiac stem cell (CSC) proliferation and differentiation and 3) sustained reverse remodeling and contractile restoration in myocardial areas of prior chronic ischemic dysfunction. In preliminary findings, we also showed that combining MSCs with CSCs leads to substantially greater efficacy at infarct size reduction. In this renewal application, we propose to identify the molecular underpinnings of this novel cell- based therapeutic strategy for ischemic cardiomyopathy using our established porcine model. Accordingly, we propose a series of three aims designed to test novel mechanistic hypotheses regarding MSC and CSC-based cardiac regeneration. We propose to 1) establish the mechanisms underlying the improved infarct scar reduction resulting from a combination of autologous CSCs and MSCs, 2) assess the impact of cell-cell communication by connexin 43 (Cx43)-mediated gap junctions on cardiac regeneration, and 3) assess the cell- cell interaction and efficacy of pharmacologically and/or genetically modified CSCs for myocardial repair in ischemic cardiomyopathy. These studies will continue our trajectory of work designed to obtain the most robust preclinical data possible to enlarge our knowledge base of the mechanisms underlying cell-based therapy for chronic ischemic heart disease. The proposed studies are timely, warranted, and could have a major health impact by addressing an unmet need in a large population of patients at risk for progressive heart failure, lifelong disability, sudden cardiac death, and recurrent hospitalizations. The approaches employed are well validated by our group and include in vitro and in vivo experimental models and efficient cell delivery systems and state of the art imaging strategies currently in use by our group. Our mechanistic research program has high translational value and is highly significant, as cellular therapy offers the potential to regenerate new myocardium and decrease progression of heart failure in patients with left ventricular dysfunction due to healed myocardial infarction. Together, these aims will advance our understanding of the mechanisms underlying cell- based therapy for chronic ischemic heart disease, with specific emphasis placed upon the impact of a combination of cell types and modulation of molecular mechanisms that can have additive or synergistic properties, thereby enhancing the efficacy and durability of cell therapy for ischemic cardiomyopathy.

Public Health Relevance

This preclinical study will address a significant clinical need, namely the investigation of mechanisms of action of new and promising cell-based therapies for heart dysfunction due to heart attack. This is one of the leading causes of cardiovascular death and disability. The proposed studies will elucidate new mechanistic insights for enhancing the clinical efficacy and safety of cell-based therapy for the treatment of this common and important disorder.

Agency
National Institute of Health (NIH)
Type
Research Project (R01)
Project #
5R01HL084275-08
Application #
8669796
Study Section
Myocardial Ischemia and Metabolism Study Section (MIM)
Program Officer
Buxton, Denis B
Project Start
Project End
Budget Start
Budget End
Support Year
8
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Miami School of Medicine
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
City
Coral Gables
State
FL
Country
United States
Zip Code
33146
Dulce, Raul A; Mayo, Vera; Rangel, Erika B et al. (2015) Interaction between neuronal nitric oxide synthase signaling and temperature influences sarcoplasmic reticulum calcium leak: role of nitroso-redox balance. Circ Res 116:46-55
Heldman, Alan W; DiFede, Darcy L; Fishman, Joel E et al. (2014) Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA 311:62-73
Suncion, Viky Y; Ghersin, Eduard; Fishman, Joel E et al. (2014) Does transendocardial injection of mesenchymal stem cells improve myocardial function locally or globally?: An analysis from the Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis (POSEIDON) randomized trial. Circ Res 114:1292-301
Karantalis, Vasileios; DiFede, Darcy L; Gerstenblith, Gary et al. (2014) Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: The Prospective Randomized Study of Mesenchymal Stem Ce Circ Res 114:1302-10
Premer, Courtney; Hare, Joshua M (2014) Can endothelial progenitor cells treat patients with refractory angina? Circ Res 115:904-7
Williams, Adam R; Suncion, Viky Y; McCall, Frederic et al. (2013) Durable scar size reduction due to allogeneic mesenchymal stem cell therapy regulates whole-chamber remodeling. J Am Heart Assoc 2:e000140
Karantalis, Vasileios; Schulman, Ivonne Hernandez; Hare, Joshua M (2013) Nitroso-redox imbalance affects cardiac structure and function. J Am Coll Cardiol 61:933-5
Gomes, Samirah A; Rangel, Erika B; Premer, Courtney et al. (2013) S-nitrosoglutathione reductase (GSNOR) enhances vasculogenesis by mesenchymal stem cells. Proc Natl Acad Sci U S A 110:2834-9
Williams, Adam R; Hatzistergos, Konstantinos E; Addicott, Benjamin et al. (2013) Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation 127:213-23
Da Silva, Jose S; Hare, Joshua M (2013) Cell-based therapies for myocardial repair: emerging role for bone marrow-derived mesenchymal stem cells (MSCs) in the treatment of the chronically injured heart. Methods Mol Biol 1037:145-63

Showing the most recent 10 out of 40 publications