Approximately one in 5000 males in human population suffers from coagulation disorder, hemophilia A. This disease is primarily caused by deficiency in the factor VIII gene located in the X-chromosome and is difficult to treat by conventional medicine. Current treatment of hemophilia A by intravenous infusion of factor VIII concentrates is very costly and has a potential side effect of developing inhibitors. Gene therapy, on the other hand, can potentially prevent these limitations of current treatments. Although recombinant adeno-associated virus (rAAV) vectors are promising for deliver factor VIII gene, applying AAV vector technology to Hemophilia A lagged behind other genetic diseases because of this size constraint (limited to ~5kb). To improve factor VIII gene delivery utilizing rAAV vectors, we have developed novel engineered factor VIII molecules for use in both dual vectors and single vector strategy.
The specific aims for this proposal are: 1). To develop a Factor VIII heavy chain molecule efficient for secretion;2). To develop and characterize a novel mini factor VIII gene for rAAV delivery;3). To analyze immune responses against the engineered factor VIII transgene products. The success of this proposal may lead to a clinical trial of hemophilia A using AAV vectors.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Gene and Drug Delivery Systems Study Section (GDD)
Program Officer
Link, Rebecca P
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Temple University
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Wang, Q; Dong, B; Firrman, J et al. (2016) Evaluation of the biological differences of canine and human factor VIII in gene delivery: implications in human hemophilia treatment. Gene Ther 23:597-605
Wang, Qizhao; Dong, Biao; Firrman, Jenni et al. (2014) Efficient production of dual recombinant adeno-associated viral vectors for factor VIII delivery. Hum Gene Ther Methods 25:261-8
Dong, Biao; Duan, Xunbao; Chow, Hoi Yee et al. (2014) Proteomics analysis of co-purifying cellular proteins associated with rAAV vectors. PLoS One 9:e86453
Mao, Jianhua; Xi, Xiaodong; Kapranov, Philipp et al. (2013) In vitro and In vivo Model Systems for Hemophilia A Gene Therapy. J Genet Syndr Gene Ther Suppl 1:
Dong, Biao; Moore, Andrea R; Dai, Jihong et al. (2013) A concept of eliminating nonhomologous recombination for scalable and safe AAV vector generation for human gene therapy. Nucleic Acids Res 41:6609-17
St Laurent, Georges; Shtokalo, Dmitry; Dong, Biao et al. (2013) VlincRNAs controlled by retroviral elements are a hallmark of pluripotency and cancer. Genome Biol 14:R73
Kapranov, Philipp; Chen, Lingxia; Dederich, Debra et al. (2012) Native molecular state of adeno-associated viral vectors revealed by single-molecule sequencing. Hum Gene Ther 23:46-55
Roberts, Sean A; Dong, Biao; Firrman, Jenni A et al. (2011) Engineering Factor Viii for Hemophilia Gene Therapy. J Genet Syndr Gene Ther 1:
Lu, Hui; Qu, Guang; Yang, Xiao et al. (2011) Systemic elimination of de novo capsid protein synthesis from replication-competent AAV contamination in the liver. Hum Gene Ther 22:625-32
Dong, Biao; Nakai, Hiroyuki; Xiao, Weidong (2010) Characterization of genome integrity for oversized recombinant AAV vector. Mol Ther 18:87-92

Showing the most recent 10 out of 13 publications