Defects in cardiac excitability are the basis for human arrhythmia and sudden cardiac death, a leading cause of mortality in developed countries. Ion channels and transporters control the movement of charged ions across cell membranes. In the heart, the coordinate activities of these proteins regulate the transmembrane electrochemical gradient to control depolarization/repolarization, and thus cardiac excitability. Normal function of ion channels and transporters requires defined biophysical properties as well as precise expression, organization, and regulation in defined membrane domains. Findings generated during our first period of funding support a new paradigm for human cardiac disease (arrhythmia) based on dysfunction in proteins that are required for proper expression and local regulation of ion channels and transporters at specific excitable membranes. Specifically, we discovered that ankyrin proteins, previously considered static membrane adapters, play dynamic roles in ion channel, transporter, and signaling protein targeting in ventricular cardiomyocytes. Patients harboring loss-of-function mutations in the ankyrin-B gene (ANK2) display a severe and complex cardiac phenotype. Phenotypes may include sinus node dysfunction, atrial fibrillation (AF), conduction defects, catecholamine-induced polymorphic ventricular arrhythmia, and/or sudden cardiac death. Moreover, we have learned that common ANK2 gene variants in the general population are associated with QTc alterations and ventricular arrhythmia susceptibility, that AnkB levels are strongly altered in large animal models of cardiovascular disease, and that the ANK2 is a candidate gene for AF susceptibility in the general human population. However, despite these translational studies implicating AnkB as a key player in cardiac excitability, the specific molecular roles of AnkB in heart remain surprisingly unknown. In fact, the identities of the in vivo cellular components of the AnkB-targeting pathway (or other cardiac targeting pathways) are still unknown. Finally, lack of an animal model of AnkB deficiency (global AnkB k/o is embryonic lethal) has prevented efforts to define new roles of AnkB in cardiac physiology and disease. For this first competitive renewal, due to important advances during the first funding cycle and the development of a number of innovative new animal models, we are well-positioned to provide the first in vivo information on the fundamental components (both upstream &downstream) of the entire AnkB-targeting pathway at baseline and in disease. We provide exciting new preliminary data that identifies a novel family of membrane trafficking proteins (EHD proteins) that regulate cardiac membrane excitability and associate with AnkB. We further provide new data that AnkB plays a novel role in targeting select Ca2+ channels in sinus node &atria. Finally, our preliminary data in mice demonstrates novel and unexpected roles of AnkB in cardiac membrane biogenesis and maintenance. Together, our published findings and preliminary data support a central hypothesis that the AnkB-based cellular pathway plays dynamic roles in myocyte membrane excitability and cardiac function. The immediate goals of our research program are to understand the specific cellular role(s) of AnkB in the heart (including upstream regulatory pathways [EHD proteins] and novel downstream targets [Cav1.3]) and determine how AnkB dysfunction leads to complex human cardiac disease. For this first competitive renewal, we present a cast of uncharacterized and innovative animal models, novel molecular tools, innovative technologies, and new antibodies to test the specific roles of the AnkB cellular pathway in vivo.

Public Health Relevance

Normal function of ion channels/transporters requires defined biophysical properties as well as precise expression, organization, and regulation in defined membrane domains. Ankyrin-B is a critical regulator of membrane protein targeting in heart and ankyrin-B dysfunction results in severe human arrhythmia. Our new studies will provide insight on key upstream and downstream roles of AnkB in diverse excitable myocytes at baseline and in cardiovascular disease using a host of novel animal models.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
2R01HL084583-07
Application #
8164677
Study Section
Special Emphasis Panel (ZRG1-CVRS-F (02))
Program Officer
Przywara, Dennis
Project Start
2006-09-01
Project End
2016-06-30
Budget Start
2011-09-01
Budget End
2012-06-30
Support Year
7
Fiscal Year
2011
Total Cost
$381,250
Indirect Cost
Name
Ohio State University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Huq, A J; Pertile, M D; Davis, A M et al. (2017) A Novel Mechanism for Human Cardiac Ankyrin-B Syndrome due to Reciprocal Chromosomal Translocation. Heart Lung Circ 26:612-618
Koenig, Sara N; Mohler, Peter J (2017) The evolving role of ankyrin-B in cardiovascular disease. Heart Rhythm 14:1884-1889
Swayne, Leigh Anne; Murphy, Nathaniel P; Asuri, Sirisha et al. (2017) Novel Variant in the ANK2 Membrane-Binding Domain Is Associated With Ankyrin-B Syndrome and Structural Heart Disease in a First Nations Population With a High Rate of Long QT Syndrome. Circ Cardiovasc Genet 10:
Li, Ning; Hansen, Brian J; Csepe, Thomas A et al. (2017) Redundant and diverse intranodal pacemakers and conduction pathways protect the human sinoatrial node from failure. Sci Transl Med 9:
Musa, Hassan; Murphy, Nathaniel P; Curran, Jerry et al. (2016) Common human ANK2 variant confers in vivo arrhythmia phenotypes. Heart Rhythm 13:1932-40
Unudurthi, Sathya D; Wu, Xiangqiong; Qian, Lan et al. (2016) Two-Pore K+ Channel TREK-1 Regulates Sinoatrial Node Membrane Excitability. J Am Heart Assoc 5:e002865
Li, Ning; Csepe, Thomas A; Hansen, Brian J et al. (2016) Adenosine-Induced Atrial Fibrillation: Localized Reentrant Drivers in Lateral Right Atria due to Heterogeneous Expression of Adenosine A1 Receptors and GIRK4 Subunits in the Human Heart. Circulation 134:486-98
Adelman, Sara; Daoud, Georges; Mohler, Peter J (2016) Strategies for Risk Analysis and Disease Classification in Atrial Fibrillation. J Cardiovasc Electrophysiol :
Roof, S R; Boslett, J; Russell, D et al. (2016) Insulin-like growth factor 1 prevents diastolic and systolic dysfunction associated with cardiomyopathy and preserves adrenergic sensitivity. Acta Physiol (Oxf) 216:421-34
Hund, Thomas J; Mohler, Peter J (2016) Atrial-specific pathways for control of intracellular signaling and myocyte function. J Clin Invest 126:3731-3734

Showing the most recent 10 out of 111 publications