Myocardial injury following an ischemic insult continues to be a challenge in terms of effectively managing or repairing the damage as well as preventing development of chronic heart failure (HF). A real urgency exists to delineate molecular pathological mechanisms for potential new therapeutic targets. Over the last 15 years we have identified a key role for G protein-coupled receptor (GPCR) kinase-2 (GRK2) in the pathophysiology of injured or stressed myocardium. Inhibition of GRK2 activity in small animal models of HF can improve cardiac function and morphology. This has primarily been done using a peptide inhibitor of GRK2, the bARKct, however, recent studies using cardiomyocyte-specific GRK2 knockout (KO) mice have provided similar beneficial results in ischemic HF. Canonically, GRK2 phosphorylates agonist-activated GPCRs, such as b- adrenergic receptors (bARs) in the heart, triggering the process of desensitization. GRK-mediated phosphorylation causes b-arrestin binding to the receptor, which blocks further G protein signaling. Interestingly, b-arrestins (b-arrestin1 and b-arrestin2 are in the heart) can also initiate intracellular signaling pathways after interacting with desensitized receptors through kinase scaffolding, which is independent of G protein signaling. A goal in this proposal is to discover novel GRK2 dependent mechanisms involved in myocardial ischemic injury and repair processes. We now have data that suggests that beneficial GRK2- dependent mechanisms in the injured heart go beyond bAR signaling and control of contractility and include myocyte survival. In this proposal we will test whether acute and/or chronic cardioprotection supported by lower GRK2 expression and/or activity might be due to events beyond cellular contractile signaling including regeneration targeted through either myocytes or stem/progenitor cells. This proposal will also begin the novel investigation into the role of b-arrestins, acting downstream of GRK activity, in myocardial ischemic injury and repair. This will be done using b-arrestin1 and b-arrestin2 KO mice and cultured myocytes and cardiac stem/progenitor cells. In fact, we have preliminary data that demonstrates b-arrestins play a critical role in bone marrow-derived cardiac stem/progenitor cell growth and function. Our Central Hypothesis is that GRK2 activity and subsequent b-arrestin function play novel roles downstream of GPCR desensitization that are critically involved in the heart's response to ischemic injury including potential repair and regeneration. Studies in this Project will employ both in vivo and in vitro techniques addressing cardiac repair through new myocyte formation and also GRK2-related mechanisms involved in the proliferation and function of bone-marrow- derived and resident cardiac stem cells.

Public Health Relevance

Elucidating novel roles for GRK2 (and b-arrestins acting downstream in a GRK-dependent manner) in the heart beyond its effect on b-adrenergic receptor signaling and contractile function will lead to a broader understanding of novel aspects of GRKs, which may be especially critical in the heart's response to ischemic injury and heart failure development. This includes a role for GRK2 in cardiomyocyte survival and proliferation, which could mediate novel cardiac repair through regeneration. Since levels and activity of GRK2 are elevated in injured and compromised myocardium, mechanistic elucidation of these novel aspects of GRK2 function will lead to a broader understanding of the pathogenesis of myocardial dysfunction, which may provide targets for new therapeutic strategies to combat ischemic injury and subsequent heart failure. Finally, b-arrestins are being appreciated more for their novel signaling functions and their role in cardiac injury and repair has been under-studied, and this proposal will shed innovative light on this area of cardiac biology.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL085503-07
Application #
8467024
Study Section
Cardiac Contractility, Hypertrophy, and Failure Study Section (CCHF)
Program Officer
Adhikari, Bishow B
Project Start
2006-07-01
Project End
2016-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
7
Fiscal Year
2013
Total Cost
$291,312
Indirect Cost
$100,912
Name
Temple University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
057123192
City
Philadelphia
State
PA
Country
United States
Zip Code
19122
de Lucia, Claudio; Gambino, Giuseppina; Petraglia, Laura et al. (2018) Long-Term Caloric Restriction Improves Cardiac Function, Remodeling, Adrenergic Responsiveness, and Sympathetic Innervation in a Model of Postischemic Heart Failure. Circ Heart Fail 11:e004153
Cannavo, Alessandro; Rengo, Giuseppe; Liccardo, Daniela et al. (2017) ?1-Blockade Prevents Post-Ischemic Myocardial Decompensation Via ?3AR-Dependent Protective Sphingosine-1 Phosphate Signaling. J Am Coll Cardiol 70:182-192
Schumacher, Sarah M; Koch, Walter J (2017) Noncanonical Roles of G Protein-coupled Receptor Kinases in Cardiovascular Signaling. J Cardiovasc Pharmacol 70:129-141
Grisanti, Laurel A; Gumpert, Anna M; Traynham, Christopher J et al. (2016) Leukocyte-Expressed ?2-Adrenergic Receptors Are Essential for Survival After Acute Myocardial Injury. Circulation 134:153-67
Rengo, Giuseppe; Pagano, Gennaro; Filardi, Pasquale Perrone et al. (2016) Prognostic Value of Lymphocyte G Protein-Coupled Receptor Kinase-2 Protein Levels in Patients With Heart Failure. Circ Res 118:1116-24
Feldman, Arthur M; Gordon, Jennifer; Wang, JuFang et al. (2016) BAG3 regulates contractility and Ca(2+) homeostasis in adult mouse ventricular myocytes. J Mol Cell Cardiol 92:10-20
Khan, Mohsin; Koch, Walter J (2016) c-kit+ Cardiac Stem Cells: Spontaneous Creation or a Perplexing Reality. Circ Res 118:783-5
Woodall, Meryl C; Woodall, Benjamin P; Gao, Erhe et al. (2016) Cardiac Fibroblast GRK2 Deletion Enhances Contractility and Remodeling Following Ischemia/Reperfusion Injury. Circ Res 119:1116-1127
Hullmann, Jonathan; Traynham, Christopher J; Coleman, Ryan C et al. (2016) The expanding GRK interactome: Implications in cardiovascular disease and potential for therapeutic development. Pharmacol Res 110:52-64
Grisanti, Laurel A; Traynham, Christopher J; Repas, Ashley A et al. (2016) ?2-Adrenergic receptor-dependent chemokine receptor 2 expression regulates leukocyte recruitment to the heart following acute injury. Proc Natl Acad Sci U S A 113:15126-15131

Showing the most recent 10 out of 58 publications