PROPOSAL ABSTRACT Late gestation fetal lung development requires coordinated controls of type II cell proliferation and differentiation. While much progress has been made in determining the mechanisms controlling fetal type II cell differentiation, relatively little is known about the control of fetal type II cell proliferation and the mechanisms which coordinate these two important developmental processes. This proposal is focused on ErbB receptor signaling mechanisms as controlling elements in fetal type II cell proliferation. The ErbB receptor family is comprised of four members: the Epidermal Growth Factor Receptor (EGF-R), ErbB2, ErbB3, and ErbB4. Through a system of different ligands and different receptor dimer formation these receptors orchestrate diverse signaling responses to act as important regulators of cell proliferation and differentiation, especially during development. We have shown the importance of this system in type II cell differentiation. A paradigm of developmental cell biology is that cell proliferation and differentiation are in mechanistic tension, such that up regulation of one process is associated with down regulation of the other process. In this proposal our hypothesis is that ErbB receptor activation mediates fetal lung type II cell growth and differentiation, through diversification of receptor responses. We will address three Specific Aims: #1: Mechanisms controlling type II cell growth versus differentiation are controlled by differential ErbB receptor activity;#2: The mechanisms controlling fetal type II cell growth and differentiation utilize ErbB receptor dimers specific to each process;and #3: Determine the role of ErbB receptor nuclear localization in regulating fetal type II cell growth and differentiation. New insight into the mechanisms controlling fetal type II cell growth will contribute to our ability to develop new therapeutic strategies that will promote normal lung development following preterm birth or other developmental lung diseases.

Public Health Relevance

Premature birth disrupts the growth and development of the lung, especially of specialized lung epithelial cells called type 2 cells, causing significant diseases such as the Respiratory Distress Syndrome and Bronchopulmonary Dysplasia, the leading causes of morbidity and mortality following preterm birth. This project will identify the mechanisms controlling growth and function of immature and mature type 2 cells by studying how ErbB receptor proteins regulate fetal type 2 cell growth and differentiation. The results from this study will provide a platform for developing novel treatments to relieve the burden of RDS and BPD.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Lung Injury, Repair, and Remodeling Study Section (LIRR)
Program Officer
Lin, Sara
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Tufts University
United States
Zip Code
Lee, Matt K; Smith, Susan M; Murray, Sandy et al. (2014) Dihydrotestosterone potentiates EGF-induced ERK activation by inducing SRC in fetal lung fibroblasts. Am J Respir Cell Mol Biol 51:114-24
Vogelgesang, Anja; Scapin, Cristina; Barone, Caroline et al. (2014) Cigarette smoke exposure during pregnancy alters fetomaternal cell trafficking leading to retention of microchimeric cells in the maternal lung. PLoS One 9:e88285
Fiaturi, Najla; Ritzkat, Anika; Dammann, Christiane E L et al. (2014) Dissociated presenilin-1 and TACE processing of ErbB4 in lung alveolar type II cell differentiation. Biochim Biophys Acta 1843:797-805
Mujahid, Sana; Nielsen, Heber C; Volpe, MaryAnn V (2013) MiR-221 and miR-130a regulate lung airway and vascular development. PLoS One 8:e55911
Zscheppang, Katja; Giese, Ulrike; Hoenzke, Stefan et al. (2013) ErbB4 is an upstream regulator of TTF-1 fetal mouse lung type II cell development in vitro. Biochim Biophys Acta 1833:2690-702
Mujahid, Sana; Logvinenko, Tanya; Volpe, Maryann V et al. (2013) miRNA regulated pathways in late stage murine lung development. BMC Dev Biol 13:13
Hoeing, Kristina; Zscheppang, Katja; Mujahid, Sana et al. (2011) Presenilin-1 processing of ErbB4 in fetal type II cells is necessary for control of fetal lung maturation. Biochim Biophys Acta 1813:480-91
Zscheppang, Katja; Konrad, Mirja; Zischka, Melanie et al. (2011) Estrogen-induced upregulation of Sftpb requires transcriptional control of neuregulin receptor ErbB4 in mouse lung type II epithelial cells. Biochim Biophys Acta 1813:1717-27
Nielsen, Heber C; Torday, John S (2011) A new compass for activin research--a triumph for systems biology. Endocrinology 152:3587-8
Liu, Washa; Purevdorj, Erkhembulgan; Zscheppang, Katja et al. (2010) ErbB4 regulates the timely progression of late fetal lung development. Biochim Biophys Acta 1803:832-9

Showing the most recent 10 out of 11 publications