Atrial fibrillation (AF) is the most common sustained arrhythmia clinically. There are accumulating evidence to suggest that ion channel modulation and remodeling play a significant role in the maintenance of AF. A variety of ionic channel abnormalities have been reported in atrial myocytes from patients and animal models with AF. Importantly, a decrease in Ca2+ current density by ~70% in atrial myocytes of patients with persistent AF has been reported. We have obtained recent evidence to demonstrate that several isoforms of small conductance Ca2+- activated K+ channels (SK or KCa2 channels) are expressed and play important roles in the repolarization of human atrial myocytes. Moreover, we have obtained new evidence to support the functional crosstalk between Ca2+ and SK channels. Hence, the goal of the proposal is test the functional coupling between SK and Cav1.3 channels at multiple levels in three independent yet mechanistically linked Aims. The critical roles of these subclasses of KCa channels in human atrial myocytes are only beginning to emerge. Very little is known regarding the regulations of SK channels in the heart. Moreover, mechanistic data from human heart remains extremely limited. Indeed, novel insights into atrial-specific ion channels may provide new treatment paradigms to target these channels without interfering with the excitability of ventricular tissues.

Public Health Relevance

Atrial fibrillation (AF) is the most common sustained arrhythmia clinically. The essence of this proposal is to deploy innovative biochemical, molecular, imaging and functional analyses to test the functional interaction between Ca2+ and SK channels in human atrial myocytes. Novel insights into atrial-specific ion channels may provide new treatment paradigms to target these channels without interfering with the excitability of ventricular tissues.

Agency
National Institute of Health (NIH)
Type
Research Project (R01)
Project #
5R01HL085844-07
Application #
8702216
Study Section
Electrical Signaling, Ion Transport, and Arrhythmias Study Section (ESTA)
Program Officer
Lathrop, David A
Project Start
Project End
Budget Start
Budget End
Support Year
7
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California Davis
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
City
Davis
State
CA
Country
United States
Zip Code
95618
Awasthi, Samir; Izu, Leighton T; Mao, Ziliang et al. (2016) Multimodal SHG-2PF Imaging of Microdomain Ca2+-Contraction Coupling in Live Cardiac Myocytes. Circ Res 118:e19-28
Sihn, Choong-Ryoul; Kim, Hyo Jeong; Woltz, Ryan L et al. (2016) Mechanisms of Calmodulin Regulation of Different Isoforms of Kv7.4 K+ Channels. J Biol Chem 291:2499-509
Sirish, Padmini; Li, Ning; Timofeyev, Valeriy et al. (2016) Molecular Mechanisms and New Treatment Paradigm for Atrial Fibrillation. Circ Arrhythm Electrophysiol 9:
Lu, Ling; Sirish, Padmini; Zhang, Zheng et al. (2015) Regulation of gene transcription by voltage-gated L-type calcium channel, Cav1.3. J Biol Chem 290:4663-76
Zhang, Xiao-Dong; Lieu, Deborah K; Chiamvimonvat, Nipavan (2015) Small-conductance Ca2+ -activated K+ channels and cardiac arrhythmias. Heart Rhythm 12:1845-51
Myers, Richard; Timofeyev, Valeriy; Li, Ning et al. (2015) Feedback mechanisms for cardiac-specific microRNAs and cAMP signaling in electrical remodeling. Circ Arrhythm Electrophysiol 8:942-50
Wang, Wenying; Flores, Maria Cristina Perez; Sihn, Choong-Ryoul et al. (2015) Identification of a key residue in Kv7.1 potassium channel essential for sensing external potassium ions. J Gen Physiol 145:201-12
Harris, Todd R; Bettaieb, Ahmed; Kodani, Sean et al. (2015) Inhibition of soluble epoxide hydrolase attenuates hepatic fibrosis and endoplasmic reticulum stress induced by carbon tetrachloride in mice. Toxicol Appl Pharmacol 286:102-11
Zhang, Xiao-Dong; Lee, Jeong-Han; Lv, Ping et al. (2015) Etiology of distinct membrane excitability in pre- and posthearing auditory neurons relies on activity of Cl- channel TMEM16A. Proc Natl Acad Sci U S A 112:2575-80
Rafizadeh, Sassan; Zhang, Zheng; Woltz, Ryan L et al. (2014) Functional interaction with filamin A and intracellular Ca2+ enhance the surface membrane expression of a small-conductance Ca2+-activated K+ (SK2) channel. Proc Natl Acad Sci U S A 111:9989-94

Showing the most recent 10 out of 51 publications