Our laboratory was the first to demonstrate unequivocally that several isoforms of small conductance Ca2+- activated K+ channels (SK or KCa2 channels) underlie Ca2+-activated K+ current (IK,Ca) in cardiomyocytes. Indeed, interests in cardiac SK channels are fueled by recent studies suggesting the possible roles of SK channels in human atrial fibrillation (AF) and up-regulation of SK channels in heart failure (HF). Therefore, SK channel may represent a novel therapeutic target for cardiac arrhythmias. Even though the activation and trafficking of SK channels are Ca2+-dependent, the Ca2+ source remains undefined. In addition, the Ca2+-dependence of SK channels is inextrictably linked to calmodulin (CaM), whose mutations have been shown to be associated with human arrhythmias. Since CaM is ubiquitous, it is paramount to disentangle the web of CaM-regulated ion channels from the roles of SK channels in calmodulinopathy. Moreover, SK channel expression is upregulated in HF but the exact mechanisms remain incompletely understood. Blockade of SK channels has been shown to be both anti-arrhythmic and proarrhythmic in various models. These aforementioned challenges are the premises of the present proposal. Thus, the essence of this proposal is to deploy innovative imaging, functional analyses, and molecular modeling to address successively the regulation of cardiac Ca2+-activated K+ channels in normal and failing cardiac myocytes.

Public Health Relevance

Cardiovascular disease remains the leading cause of death in United States. The essence of this proposal is to deploy innovative imaging, functional analyses, and molecular modeling to address successively the regulation of cardiac Ca2+-activated K+ channels in normal and failing cardiac myocytes.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL085844-10
Application #
9397558
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Balijepalli, Ravi C
Project Start
2007-04-15
Project End
2020-11-30
Budget Start
2017-12-01
Budget End
2018-11-30
Support Year
10
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of California Davis
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Gluck, Jessica M; Herren, Anthony W; Yechikov, Sergey et al. (2017) Biochemical and biomechanical properties of the pacemaking sinoatrial node extracellular matrix are distinct from contractile left ventricular matrix. PLoS One 12:e0185125
Sirish, Padmini; Ledford, Hannah A; Timofeyev, Valeriy et al. (2017) Action Potential Shortening and Impairment of Cardiac Function by Ablation of Slc26a6. Circ Arrhythm Electrophysiol 10:
López, Javier E; Sharma, Janhavi; Avila, Jorge et al. (2017) Novel large-particle FACS purification of adult ventricular myocytes reveals accumulation of myosin and actin disproportionate to cell size and proteome in normal post-weaning development. J Mol Cell Cardiol 111:114-122
Zhang, Zheng; Ledford, Hannah A; Park, Seojin et al. (2017) Distinct subcellular mechanisms for the enhancement of the surface membrane expression of SK2 channel by its interacting proteins, ?-actinin2 and filamin A. J Physiol 595:2271-2284
Frederich, Bert J; Timofeyev, Valeriy; Thai, Phung N et al. (2017) Electrotaxis of cardiac progenitor cells, cardiac fibroblasts, and induced pluripotent stem cell-derived cardiac progenitor cells requires serum and is directed via PI3'K pathways. Heart Rhythm 14:1685-1692
Sirish, Padmini; Li, Ning; Timofeyev, Valeriy et al. (2016) Molecular Mechanisms and New Treatment Paradigm for Atrial Fibrillation. Circ Arrhythm Electrophysiol 9:
Awasthi, Samir; Izu, Leighton T; Mao, Ziliang et al. (2016) Multimodal SHG-2PF Imaging of Microdomain Ca2+-Contraction Coupling in Live Cardiac Myocytes. Circ Res 118:e19-28
Yechikov, Sergey; Copaciu, Raul; Gluck, Jessica M et al. (2016) Same-Single-Cell Analysis of Pacemaker-Specific Markers in Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Subtypes Classified by Electrophysiology. Stem Cells 34:2670-2680
Sihn, Choong-Ryoul; Kim, Hyo Jeong; Woltz, Ryan L et al. (2016) Mechanisms of Calmodulin Regulation of Different Isoforms of Kv7.4 K+ Channels. J Biol Chem 291:2499-509
Wang, Wenying; Flores, Maria Cristina Perez; Sihn, Choong-Ryoul et al. (2015) Identification of a key residue in Kv7.1 potassium channel essential for sensing external potassium ions. J Gen Physiol 145:201-12

Showing the most recent 10 out of 56 publications