Abdominal aortic aneurysms (AAAs) are focal, asymmetric dilatations of the infrarenal aorta that are increasingly responsible for significant mortality in our aging society. The primary clinical (global) metrics for deciding intervention remain the maximum diameter and rate of expansion of the lesion. Yet, many smaller lesions rupture whereas many larger ones may not rupture over long periods. Because rupture occurs when wall stress exceeds wall strength, it should not be surprising that calculated (local) wall stress can be a better predictor of rupture-risk than current (geometric) metrics. Our work is motivated, however, by the need to estimate much better both wall stress and strength, that is, to move beyond current stress analyses that are simply "snap shots" in time based on patient-specific geometric models of lesions that are assumed to have the same uniform, population-averaged material properties regardless of size. In contrast, we will build a novel biochemomechanical computational model to simulate the patient-specific evolution an AAA consistent with the well accepted hypothesis that intramural cells can remodel matrix in response to perturbed mechanical stimuli and thereby generate regional heterogeneities that can offset complexities in geometry and hemodynamics that would otherwise cause marked regional variations in wall stress (and thus perturbed cell function). Complicating this mechano-stimulated evolution, however, is a hemodynamically driven intraluminal thrombus (ILT) that can upset the local balance in matrix production and removal and thereby locally weaken the wall. The primary goal of this Competing Renewal of HL086418 (funded in 2008 at the 6.3 percentile) is to build on a successful first 4 years of funding (22 papers published, plus 6 submitted/in preparation) and extend our current mechano-biological model to include local chemo-biological effects of an evolving ILT on AAA enlargement and rupture-risk. Our three Specific Aims are (i) to build and verify, via parametric studies exploiting idealized geometries, a novel fluid-solid-growth model, (ii) to use a well established rat elastase infusion model to correlate, for the firs time, local effects of thin vs. thick ILT on histological, cell biological, and mechanical propertis of the evolving AAA wall, and (iii) to use serial CT scans retrospectively from 30 patients to trai and test our final model, with the ultimate goal of providing increased confidence in predictions based on standard clinical information of the probable expansion or rupture-risk over the subsequent 6 to 12 months. In summary, the fundamental hypothesis driving this work is - the complexity of AAA pathophysiology and biomechanics results from competing effects of a mechano-stimulated injury response and a chronic inflammatory response, the latter of which depends primarily on spatiotemporal changes in ILT that are driven by the changing hemo- dynamics. We suggest that the only way to understand such complexity is to build and use an appropriate computational model, which we submit will help resolve longstanding controversies regarding the roles of ILT.

Public Health Relevance

Abdominal aortic aneurysms are responsible for increasing morbidity and mortality in our aging population. Mounting evidence suggests that evolving blood flow patterns and associated build-up of intraluminal thrombus within these lesions play important roles in dictating localized changes in wall stress and strength, and thus rupture-risk, via an unbalanced synthesis and degradation of extracellular matrix proteins. This work will build the first computational model to account for these complexities and thus provide unique insight for clinical care.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BST-U (02))
Program Officer
Tolunay, Eser
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
Engineering (All Types)
Schools of Engineering
New Haven
United States
Zip Code
Roccabianca, S; Figueroa, C A; Tellides, G et al. (2014) Quantification of regional differences in aortic stiffness in the aging human. J Mech Behav Biomed Mater 29:618-34
Li, Wei; Li, Qingle; Jiao, Yang et al. (2014) Tgfbr2 disruption in postnatal smooth muscle impairs aortic wall homeostasis. J Clin Invest 124:755-67
Cyron, C J; Wilson, J S; Humphrey, J D (2014) Mechanobiological stability: a new paradigm to understand the enlargement of aneurysms? J R Soc Interface 11:20140680
Cyron, C J; Humphrey, J D (2014) Vascular homeostasis and the concept of mechanobiological stability. Int J Eng Sci 85:203-223
Blose, Kory J; Ennis, Terri L; Arif, Batool et al. (2014) Periadventitial adipose-derived stem cell treatment halts elastase-induced abdominal aortic aneurysm progression. Regen Med 9:733-41
Wilson, John S; Humphrey, J D (2014) Evolving anisotropy and degree of elastolytic insult in abdominal aortic aneurysms: potential clinical relevance? J Biomech 47:2995-3002
Cheheltani, Rabee; McGoverin, Cushla M; Rao, Jayashree et al. (2014) Fourier transform infrared spectroscopy to quantify collagen and elastin in an in vitro model of extracellular matrix degradation in aorta. Analyst 139:3039-47
Roccabianca, S; Bellini, C; Humphrey, J D (2014) Computational modelling suggests good, bad and ugly roles of glycosaminoglycans in arterial wall mechanics and mechanobiology. J R Soc Interface 11:20140397
Bellini, C; Ferruzzi, J; Roccabianca, S et al. (2014) A microstructurally motivated model of arterial wall mechanics with mechanobiological implications. Ann Biomed Eng 42:488-502
Valentin, A; Humphrey, J D; Holzapfel, G A (2013) A finite element-based constrained mixture implementation for arterial growth, remodeling, and adaptation: theory and numerical verification. Int J Numer Method Biomed Eng 29:822-49

Showing the most recent 10 out of 28 publications