Peroxisome proliferator-activated receptor gamma (PPAR() is an anti-inflammatory molecule in various tissue systems including the lung. Its functional role in the lung is not well understood. The long-term goal of this work will determine PPAR( molecular pathways in lung pathogenesis. The central hypothesis for the proposed studies is that PPAR( is a mediator of pulmonary inflammation via the molecular control of matrix metalloproteinase-12 (MMP-12) and that this control derives from fatty acid ligands, generated in the lysosomes by lysosomal acid lipase (LAL). This has been supported by our previous study that blockage of its ligand synthesis in lysosomal acid lipase deficient mice (lal-/-) caused pulmonary inflammation, emphysema, unwanted epithelial cell growth and aberrant gene expression. Treatment with PPAR( ligands 9-HODE and Ciglitazone significantly attenuated lal-/- pulmonary inflammation and aberrant gene expression. The ligands and PPAR( negatively regulate MMP-12 promoter activity in in vitro transient transfection assays. The PPAR( protein is primarily detected in broncho-alveolar macrophages, Clara cells and alveolar type II epithelial cells in the lung. Thus, the central hypothesis will be tested in our two new transgenic models, in which endogenous PPAR( is inactivated by over-expression of its dominant negative form (dnPPAR() in alveolar type II epithelial cells or bronchoalveolar macrophages in doxycycline-inducible transgenic mouse system. Preliminary assessment of a transgenic model, in which dnPPAR( was over- expressed for 2 months under the control of the CCSP promoter, showed inflammatory cell influx into the lung and emphysema. In addition, the expression level of MMP12 increased 55-fold in the dnPPAR( transgenic mice. The long-term pathogenic effect of dnPPAR( over-expression has not been determined.
Three specific aims are designed to test the central hypothesis:
Specific Aim 1 : Determine pathogenesis of dnPPAR( in respiratory epithelial cells;
Specific Aim 2 : Determine pathogenesis of dnPPAR( in macrophages;
Specific Aim 3 : Determine molecular mechanism of MMP12 regulation in lung epithelial cells. Together, these studies will significantly enhance our knowledge for understanding the pathophysiological function of PPAR( in the lung, especially in pulmonary inflammation and tissue remodeling, and elucidate the molecular mechanism of gene regulation in MMP12 that mediates the phenotype in the lung of lal-/- mice. The outcomes of these studies will provide evidence to design new strategies to combat pulmonary inflammation and emphysema. PROJECT NARRATIVE: The objectives of this research proposal are to understand the critical role of peroxisome proliferator- activated receptor gamma (PPAR() as anti-inflammatory effector in the lung. We are using the state-of-art techniques to create transgenic mice that have cell specific and temporal regulated expression of dominant negative form of PPAR( (dnPPAR() in pulmonary cells (alveolar type II epithelial cells or bronchio-alveolar macrophages) and characterizing their pulmonary inflammation, remodeling, and emphysema phenotype. In addition, the proposed studies will elucidate the molecular linker of inactivation of PPAR( and the remodeling and emphysema phenotype through transcriptional regulation of matrix metallproteinase-12 (MMP-12) gene. Together, these studies will significantly enhance our knowledge for understanding the pathophysiological function of PPAR( in the lung, especially in pulmonary inflammation and tissue remodeling. These studies will provide new approaches to design strategies and discover drugs to combat emphysema and COPD.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL087001-05
Application #
8309359
Study Section
Lung Injury, Repair, and Remodeling Study Section (LIRR)
Program Officer
Postow, Lisa
Project Start
2008-06-09
Project End
2014-03-31
Budget Start
2012-06-01
Budget End
2014-03-31
Support Year
5
Fiscal Year
2012
Total Cost
$381,150
Indirect Cost
$133,650
Name
Indiana University-Purdue University at Indianapolis
Department
Pathology
Type
Schools of Medicine
DUNS #
603007902
City
Indianapolis
State
IN
Country
United States
Zip Code
46202
Zhao, Ting; Ding, Xinchun; Du, Hong et al. (2014) Myeloid-derived suppressor cells are involved in lysosomal acid lipase deficiency-induced endothelial cell dysfunctions. J Immunol 193:1942-53
Huang, Stanley Ching-Cheng; Everts, Bart; Ivanova, Yulia et al. (2014) Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol 15:846-55
Ding, Xinchun; Du, Hong; Yoder, Mervin C et al. (2014) Critical role of the mTOR pathway in development and function of myeloid-derived suppressor cells in lal-/- mice. Am J Pathol 184:397-408
Yan, Cong; Ding, Xinchun; Wu, Lingyan et al. (2013) Stat3 downstream gene product chitinase 3-like 1 is a potential biomarker of inflammation-induced lung cancer in multiple mouse lung tumor models and humans. PLoS One 8:e61984
Yan, Cong; Ding, Xinchun; Dasgupta, Nupur et al. (2012) Gene profile of myeloid-derived suppressive cells from the bone marrow of lysosomal acid lipase knock-out mice. PLoS One 7:e30701
Wu, Lingyan; Yan, Cong; Czader, Magdalena et al. (2012) Inhibition of PPARýý in myeloid-lineage cells induces systemic inflammation, immunosuppression, and tumorigenesis. Blood 119:115-26
Bowden, Kristin L; Bilbey, Nicolas J; Bilawchuk, Leanne M et al. (2011) Lysosomal acid lipase deficiency impairs regulation of ABCA1 gene and formation of high density lipoproteins in cholesteryl ester storage disease. J Biol Chem 286:30624-35
Li, Yuan; Qu, Peng; Wu, Lingyan et al. (2011) Api6/AIM/Spýý/CD5L overexpression in alveolar type II epithelial cells induces spontaneous lung adenocarcinoma. Cancer Res 71:5488-99
Qu, Peng; Yan, Cong; Blum, Janice S et al. (2011) Myeloid-specific expression of human lysosomal acid lipase corrects malformation and malfunction of myeloid-derived suppressor cells in lal-/- mice. J Immunol 187:3854-66
Wu, Lingyan; Wang, Guixue; Qu, Peng et al. (2011) Overexpression of dominant negative peroxisome proliferator-activated receptor-? (PPAR?) in alveolar type II epithelial cells causes inflammation and T-cell suppression in the lung. Am J Pathol 178:2191-204

Showing the most recent 10 out of 17 publications