Voltage-gated L-type Ca2+ channels mediate Ca2+ signals that are essential for cardiac, endocrine, and neural functions. Although Cav1.2 is the predominant class of L-type channel in most tissues, Cav1.3 L-type channels play a major role in cardiac rhythmicity and neuronal excitability. Since small changes in Ca2+ influx can profoundly influence cellular excitability, factors that regulate Cav1.3 channels may control the balance between normal and diseased states of the nervous and cardiovascular systems. In screening for signaling molecules that specifically modulate Cav1.3, we discovered a novel regulation of these channels by interactions with proteins containing motifs known as PDZ-domains. The PDZ-protein, erbin, binds to the C-terminal domain (CT) of the 11-subunit (111.3) of Cav1.3 and dramatically enhances channel opening in response to depolarizing stimuli in a process termed voltage-dependent facilitation (VDF). A closely related protein, densin-180, also interacts with the 111.3 CT but does not influence VDF. Instead, densin-180 inhibits Ca2+-dependent inactivation of Cav1.3 and this effect depends on functional recruitment of calmodulin-dependent kinase II. Based on these findings, we hypothesize that Cav1.3 channels are fundamentally regulated by PDZ-protein interactions, which may diversify the signaling potential of these channels in different cell-types. The goal of this proposal is to characterize the molecular mechanism by which Cav1.3 channels are differentially modulated by such PDZ interactions, and the physiological significance of this regulation using molecular biology, immunochemistry, and electrophysiology. The proposed studies will clarify structure/function relationships and modulatory mechanisms that distinguish Cav1.3 from other L-type channels, which will broaden our understanding of the diverse physiological roles of Cav1.3 in regulating heart-rate, insulin secretion, and neural adaptations to psychostimulants. The long-term objective of this research is to gain molecular insights into the development of Cav1.3-selective drugs, which may provide novel and effective treatments for cardiac arrhythmias, diabetes, and drug abuse.

Public Health Relevance

The proposed research will modulate voltage-gated Ca2+ channels. We will elucidate new structure/function relationships and modulatory mechanisms, which may be altered in diseased states of the cardiovascular and nervous systems.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL087120-02
Application #
7798590
Study Section
Neurotransporters, Receptors, and Calcium Signaling Study Section (NTRC)
Program Officer
Przywara, Dennis
Project Start
2009-05-01
Project End
2013-04-30
Budget Start
2010-05-01
Budget End
2011-04-30
Support Year
2
Fiscal Year
2010
Total Cost
$345,500
Indirect Cost
Name
University of Iowa
Department
Physiology
Type
Schools of Medicine
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Mesirca, P; Torrente, A-G; Bidaud, I et al. (2018) [Genesis of cardiac sinus automaticity and therapeutic perspectives]. Arch Mal Coeur Vaiss Pratique 2018:35-39
Mesirca, Pietro; Bidaud, Isabelle; Briec, François et al. (2016) G protein-gated IKACh channels as therapeutic targets for treatment of sick sinus syndrome and heart block. Proc Natl Acad Sci U S A 113:E932-41
Inagaki, Akira; Frank, C Andrew; Usachev, Yuriy M et al. (2014) Pharmacological correction of gating defects in the voltage-gated Ca(v)2.1 Ca²? channel due to a familial hemiplegic migraine mutation. Neuron 81:91-102
Mesirca, Pietro; Alig, Jacqueline; Torrente, Angelo G et al. (2014) Cardiac arrhythmia induced by genetic silencing of 'funny' (f) channels is rescued by GIRK4 inactivation. Nat Commun 5:4664
Núñez-Santana, Félix Luis; Oh, Myongsoo Matthew; Antion, Marcia Diana et al. (2014) Surface L-type Ca2+ channel expression levels are increased in aged hippocampus. Aging Cell 13:111-20
Knoflach, Dagmar; Kerov, Vasily; Sartori, Simone B et al. (2013) Cav1.4 IT mouse as model for vision impairment in human congenital stationary night blindness type 2. Channels (Austin) 7:503-13
Hall, Duane D; Dai, Shuiping; Tseng, Pang-Yen et al. (2013) Competition between ?-actinin and Ca²?-calmodulin controls surface retention of the L-type Ca²? channel Ca(V)1.2. Neuron 78:483-97
Liu, Xiaoni; Kerov, Vasily; Haeseleer, Françoise et al. (2013) Dysregulation of Ca(v)1.4 channels disrupts the maturation of photoreceptor synaptic ribbons in congenital stationary night blindness type 2. Channels (Austin) 7:514-23
Mesirca, Pietro; Marger, Laurine; Toyoda, Futoshi et al. (2013) The G-protein-gated K+ channel, IKACh, is required for regulation of pacemaker activity and recovery of resting heart rate after sympathetic stimulation. J Gen Physiol 142:113-26
Gregory, Frederick D; Pangrsic, Tina; Calin-Jageman, Irina E et al. (2013) Harmonin enhances voltage-dependent facilitation of Cav1.3 channels and synchronous exocytosis in mouse inner hair cells. J Physiol 591:3253-69

Showing the most recent 10 out of 26 publications