Arterial smooth muscle cells (SMCs) mediate arterial remodeling and repair. SMCs are phenotypically plastic and can transition to proliferative, migratory """"""""synthetic"""""""" SMCs that modulate intimal hyperplasia and stability of atherosclerotic plaques, and SMC chondro- osseous phenotypic transition promotes artery calcification. Our central hypothesis is that the multifunctional protein transglutaminase 2 (TG2), a known mediator of wound repair and tissue fibrosis, regulates both atherosclerotic lesion calcification and progression. Expression of TG2 is increased in atherosclerotic lesions. Activated cells release TG2, and TG2 covalently crosslinks numerous extracellular matrix substrate proteins via transamidation. TG2 also has reciprocally regulated TG and GTP binding/GTPase activities, and is an integrin co-receptor for fibronectin. TG2 modulates SMC adhesion, migration, differentiation and function. Resistance artery remodeling induced by chronic vasoconstriction is TG2-dependent. Our Preliminary Studies reveal that TG2 regulates chondro-osseous differentiation and calcification in cultured chondrocytes and aortic SMCs. TG2 also regulates SMC expression of the calcification inhibitor and pro-atherogenic phosphoprotein osteopontin, a marker of the transition of SMCs from contractile to synthetic differentiation. Bone marrow-specific TG2 expression limits atherosclerotic lesion size in LDL receptor knockout bone marrow recipients and TG2 appears to drive mouse aortic valve calcification. We will test the linked hypotheses that extracellular TG2, by modifying the extracellular matrix, constitutively restrains cultured aortic SMC transition from contractile to synthetic differentiation but that excess TG2 drives phenotypic SMC transition to chondro-osseous calcifying cells in vitro. We also will test the hypothesis that TG2 limits atherosclerotic plaque vulnerability while concurrently promoting atherosclerotic intimal lesion calcification in vivo, studying apoE TG2 double knockout mice. Completion of these studies will delineate the potential for modulation of arterial TG2 as a therapy to suppress artery calcification or atherosclerotic lesion progression. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL087252-01A1
Application #
7388360
Study Section
Atherosclerosis and Inflammation of the Cardiovascular System Study Section (AICS)
Program Officer
Srinivas, Pothur R
Project Start
2008-05-15
Project End
2012-02-28
Budget Start
2008-05-15
Budget End
2009-02-28
Support Year
1
Fiscal Year
2008
Total Cost
$346,250
Indirect Cost
Name
Veterans Medical Research Fdn/San Diego
Department
Type
DUNS #
933863508
City
San Diego
State
CA
Country
United States
Zip Code
92161
Dammanahalli, K Jagadeesha; Stevens, Stephanie; Terkeltaub, Robert (2012) Vanin-1 pantetheinase drives smooth muscle cell activation in post-arterial injury neointimal hyperplasia. PLoS One 7:e39106
Nitschke, Yvonne; Baujat, Genevieve; Botschen, Ulrike et al. (2012) Generalized arterial calcification of infancy and pseudoxanthoma elasticum can be caused by mutations in either ENPP1 or ABCC6. Am J Hum Genet 90:25-39
Yu, Weifang; Liu-Bryan, Ru; Stevens, Stephanie et al. (2012) RAGE signaling mediates post-injury arterial neointima formation by suppression of liver kinase B1 and AMPK activity. Atherosclerosis 222:417-25
Neogi, Tuhina; George, Jacob; Rekhraj, Sushma et al. (2012) Are either or both hyperuricemia and xanthine oxidase directly toxic to the vasculature? A critical appraisal. Arthritis Rheum 64:327-38
Nitschke, Yvonne; Weissen-Plenz, Gabriele; Terkeltaub, Robert et al. (2011) Npp1 promotes atherosclerosis in ApoE knockout mice. J Cell Mol Med 15:2273-83
Rutsch, Frank; Nitschke, Yvonne; Terkeltaub, Robert (2011) Genetics in arterial calcification: pieces of a puzzle and cogs in a wheel. Circ Res 109:578-92
Cecil, Denise L; Terkeltaub, Robert A (2011) Arterial calcification is driven by RAGE in Enpp1-/- mice. J Vasc Res 48:227-35
Neogi, Tuhina; Terkeltaub, Robert; Ellison, R Curtis et al. (2011) Serum urate is not associated with coronary artery calcification: the NHLBI Family Heart Study. J Rheumatol 38:111-7
Huebner, J L; Johnson, K A; Kraus, V B et al. (2009) Transglutaminase 2 is a marker of chondrocyte hypertrophy and osteoarthritis severity in the Hartley guinea pig model of knee OA. Osteoarthritis Cartilage 17:1056-64
Terkeltaub, Robert (2008) Macrophage glucocorticoid receptors join the intercellular dialogue in atherosclerotic lesion calcification. Arterioscler Thromb Vasc Biol 28:2096-8

Showing the most recent 10 out of 11 publications