the opportunity to delineate the pathogenesis of its phenotype. Based on structural and functional similarities between plakoglobin (PG), a desmosomal protein and a member armadillo family, and ?-catenin, the signal transducer of the canonical Wnt signaling and also an armadillo protein, we posit competitive interactions between PG (aka ?-catenin) and ?-catenin suppresses the canonical Wnt signaling, leads to myocyte apoptosis and enhanced adipogenesis. To test the hypothesis, we generated cardiac-restricted desmoplakin (DP) deficient mice and siRNA-mediated DP-deficient atrial myocytes. We showed DP-deficiency led to nuclear translocation of PG, suppression of the canonical Wnt signaling, myocyte apoptosis, fibrosis and adipogenesis. We propose to identify the cellular origin of excess adipocytes in the heart, delineate the molecular basis of suppressed canonical Wnt signaling and prevent the phenotype by activating the canonical Wnt signaling.
The aims are: 1. To identify the cellular origin of excess adipocytes in ARVC through in vivo genetic fate-mapping and co-culture studies;2. To determine whether suppressed canonical Wnt signaling is a common mechanism for the pathogenesis of ARVC by expression of titratable levels of mutant desmosomal proteins in transgenic mice hearts;3. To delineate the mechanism by which nuclear PG suppresses the canonical Wnt signaling by studying protein-protein interactions and the effects of PG on effective assembly of Wnt core proteins complex;4. To rescue the ARVC phenotype in vivo and in vivo by activating the canonical Wnt signaling through conditional activation of degradation-resistant ?-catenin and pharmacological activation and hence, to fulfill the Koch's postulates of causality. Studies in genetically modified mice, transduced cardiac myocytes and myofibroblasts are designed to delineate the components of each aim. The results could elucidate the molecular pathogenesis of desmosomal ARVC and lead to identification of new molecular diagnostic markers and novel pharmacological targets for the treatment and prevention of ARVC in humans. Project Description Page 6

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Cardiac Contractility, Hypertrophy, and Failure Study Section (CCHF)
Program Officer
Wang, Lan-Hsiang
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Health Science Center Houston
Schools of Medicine
United States
Zip Code
Marian, Ali J (2014) Copy number variants and the genetic enigma of congenital heart disease. Circ Res 115:821-3
Marian, Ali J (2014) Recent developments in cardiovascular genetics and genomics. Circ Res 115:e11-7
Xiong, Q; Cao, L; Hu, J et al. (2014) A rare loss-of-function SCN5A variant is associated with lidocaine-induced ventricular fibrillation. Pharmacogenomics J 14:372-5
Marian, Ali J (2014) Causality in genetics: the gradient of genetic effects and back to Koch's postulates of causality. Circ Res 114:e18-21
Chen, Suet Nee; Gurha, Priyatansh; Lombardi, Raffaella et al. (2014) The hippo pathway is activated and is a causal mechanism for adipogenesis in arrhythmogenic cardiomyopathy. Circ Res 114:454-68
Ruggiero, Alessandra; Chen, Suet Nee; Lombardi, Raffaella et al. (2013) Pathogenesis of hypertrophic cardiomyopathy caused by myozenin 2 mutations is independent of calcineurin activity. Cardiovasc Res 97:44-54
Marian, Ali J (2013) Errors in DNA replication and genetic diseases. Curr Opin Cardiol 28:269-71
Roberts, Robert; Marian, A J; Dandona, Sonny et al. (2013) Genomics in cardiovascular disease. J Am Coll Cardiol 61:2029-37
Peng, Xiaogang; Shao, Jianghua; Shen, Yang et al. (2013) FAT10 protects cardiac myocytes against apoptosis. J Mol Cell Cardiol 59:1-10
Marian, A J (2013) The discovery of the ACE2 gene. Circ Res 112:1307-9

Showing the most recent 10 out of 26 publications