Pulmonary Arterial Hypertension (PAH) is characterized by elevations in pulmonary artery pressure, vascular remodeling, and hyperproliferation of endothelial cells. While there is no cure or preventative treatment for this disease at present, newer targeted therapies can improve outcomes by altering vascular tone using prostacyclin (PGI2) analogues, dual endothelin antagonists, or phosphodiesterase - 5 inhibitors. Recent progress in the understanding of genetic aberrations in PAH suggests that it is a complex disorder and that modifier genes are potentially involved in mediating increased susceptibility and severity. Two genes that affect the level of prostacyclin signaling, prostacyclin synthase (PGIS) and the nuclear receptor PPAR?, are down- regulated in patients with PAH. Disruption of PGI2 signaling through the PPAR? pathway leads to aberrant cell growth. Our hypothesis proposes that PGI2 can signal through either PGIR or PPAR?. We hypothesize that signaling through PGIR results in more prominent effects on vascular tone (RV pressures, RV hypertrophy) while PPAR? stimulation results in more effects on vascular remodeling. The research proposed here focuses on 1) the effectiveness of augmenting signaling through the two different PGI2 receptors as a treatment to reverse remodeling of both smooth muscle and endothelial cells in PAH (PPAR?) or vascular tone (PGIR), 2) the potential modifier gene role of the PGIS and gene in conferring a predisposition to PAH and an increased likelihood of developing severe PAH, and 3) the mechanism of PGIS and PPAR? loss of expression in human disease. We will use two sophisticated murine modeling systems generated by our group to dissect the relative contribution of the two receptors to the development of PAH. Our proposed pre-clinical rat studies establish the effectiveness of a combinatorial treatment using a PGI2 analogue and a PPAR? agonist may quickly translate in to a human combined drug trial. Our preliminary work demonstrates that sequence variation in the proximal PGIS promoter region affects promoter activity leading to low PGIS expression, thus establishing a predisposition to PAH. We will sequence the PGIS promoters from familial pulmonary hypertension, correlating specific haplotypes with disease on-set, severity, and morbidity. Finally, because epigenetic silencing and chromosomal loss are common mechanisms of gene expression down-regulation, we will determine if either is responsible for PGIS or PPAR? down-regulation in micro-dissected PAH lesions using methylation specific PCR (MSP) and fluorescence in situ hybridization (FISH).
Specific Aim 1 : Delineate the contributions of PGIS and PPAR? pathways to PAH susceptibility and severity.
Specific Aim 2 : Define transcriptional activity of PGIS promoter sequence variations in relevant primary cells types, and their frequency and correlation in a defined human population.
Specific Aim 3 : Determine if methylation silencing and/or allelic loss account for PGIS and PPAR? down- regulation in micro-dissected lesions from patients with severe PAH.

Public Health Relevance

Pulmonary Arterial Hypertension (PAH) is a very serious lung disease in which blood pressure in the lung's pulmonary artery increases making the heart work harder to pump blood into the lung. PAH is very rare with an annual incidence of 1 to 2 per million and occurs more often in women. While there is no cure or preventative treatment, newer targeted therapies can improve outcomes. This project will help us understand how current treatments are reducing the changes in the pulmonary artery that lead to the high blood pressure and may lead to newer therapies that are more effective in controlling the progression and severity of PAH.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL089508-04
Application #
8134960
Study Section
Respiratory Integrative Biology and Translational Research Study Section (RIBT)
Program Officer
Peavy, Hannah H
Project Start
2008-09-15
Project End
2013-08-31
Budget Start
2011-09-01
Budget End
2013-08-31
Support Year
4
Fiscal Year
2011
Total Cost
$114,750
Indirect Cost
Name
University of Colorado Denver
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Nozik-Grayck, Eva; Woods, Crystal; Stearman, Robert S et al. (2016) Histone deacetylation contributes to low extracellular superoxide dismutase expression in human idiopathic pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 311:L124-34
Glidewell, Steven C; Miyamoto, Shelley D; Grossfeld, Paul D et al. (2015) Transcriptional Impact of Rare and Private Copy Number Variants in Hypoplastic Left Heart Syndrome. Clin Transl Sci 8:682-9
Soubrier, Florent; Chung, Wendy K; Machado, Rajiv et al. (2014) [Genetics and genomics of pulmonary arterial hypertension]. Turk Kardiyol Dern Ars 42 Suppl 1:17-28
Stearman, Robert S; Cornelius, Amber R; Lu, Xiao et al. (2014) Functional prostacyclin synthase promoter polymorphisms. Impact in pulmonary arterial hypertension. Am J Respir Crit Care Med 189:1110-20
Soubrier, Florent; Chung, Wendy K; Machado, Rajiv et al. (2013) Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol 62:D13-21
Meadows, Christina A; Risbano, Michael G; Zhang, Li et al. (2011) Increased expression of growth differentiation factor-15 in systemic sclerosis-associated pulmonary arterial hypertension. Chest 139:994-1002
Geraci, Mark W; Bull, Todd M; Tuder, Rubin M (2010) Genomics of pulmonary arterial hypertension: implications for therapy. Heart Fail Clin 6:101-14