The leading causes of chronic heart disease are all associated with a non-adaptive deposit of fibrous tissue in the heart. Since fibrous tissue interferes with both cardiac function and cardiac filling, it is a major cause of heart failure. Utilizing models of repetitive ischemia and angiotensin II infusion, this proposal intends to investigate the hypothesis that non-adaptive fibrosis of the heart arises from dysfunction of the immune and inflammatory mechanisms, which, under appropriate circumstances, are protective. The proposal studies the cell signaling associated with the uptake of specific inflammatory cells and the mechanisms by which this results in the generation of a specific fibroblast type that is obligate for cardiac fibrosis. We provide evidence that this mechanism is critical to non-adaptive cardiac fibrosis resulting from a variety of pathological causes. The goal of the project is to identify the common factors leading to cardiac fibrosis from diverse chronic cardiac conditions and suggest potential interventions which might mitigate this process.

Public Health Relevance

This project proposes to identify the signaling mechanisms associated with interstitial fibrosis of the heart common to multiple cardiac diseases utilizing repetitive ischemia and angiotensin II infusion models. The data suggests that immunoinflammatory dysregulation results in a Th2/M2 phenotypic response critical to the generation of myeloid-derived fibroblasts from M2 macrophages and interstitial fibrosis.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Myocardial Ischemia and Metabolism Study Section (MIM)
Program Officer
Adhikari, Bishow B
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Baylor College of Medicine
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Xia, Yunfeng; Yan, Jingyin; Jin, Xiaogao et al. (2014) The chemokine receptor CXCR6 contributes to recruitment of bone marrow-derived fibroblast precursors in renal fibrosis. Kidney Int 86:327-37
Reineke, Erin L; Benham, Ashley; Soibam, Benjamin et al. (2014) Steroid receptor coactivator-2 is a dual regulator of cardiac transcription factor function. J Biol Chem 289:17721-31
Reddy, Anilkumar K; Hartley, Craig J; Pham, Thuy T et al. (2014) Young little mice express a premature cardiovascular aging phenotype. J Gerontol A Biol Sci Med Sci 69:152-9
Safdar, Zeenat; Tamez, Emilio; Chan, Wenyaw et al. (2014) Circulating collagen biomarkers as indicators of disease severity in pulmonary arterial hypertension. JACC Heart Fail 2:412-21
Xia, Yunfeng; Jin, Xiaogao; Yan, Jingyin et al. (2014) CXCR6 plays a critical role in angiotensin II-induced renal injury and fibrosis. Arterioscler Thromb Vasc Biol 34:1422-8
Cieslik, Katarzyna A; Trial, JoAnn; Crawford, Jeffrey R et al. (2014) Adverse fibrosis in the aging heart depends on signaling between myeloid and mesenchymal cells; role of inflammatory fibroblasts. J Mol Cell Cardiol 70:56-63
Cieslik, Katarzyna A; Taffet, George E; Crawford, Jeffrey R et al. (2013) AICAR-dependent AMPK activation improves scar formation in the aged heart in a murine model of reperfused myocardial infarction. J Mol Cell Cardiol 63:26-36
Cieslik, Katarzyna A; Trial, JoAnn; Carlson, Signe et al. (2013) Aberrant differentiation of fibroblast progenitors contributes to fibrosis in the aged murine heart: role of elevated circulating insulin levels. FASEB J 27:1761-71
Duerrschmid, Clemens; Crawford, Jeffrey R; Reineke, Erin et al. (2013) TNF receptor 1 signaling is critically involved in mediating angiotensin-II-induced cardiac fibrosis. J Mol Cell Cardiol 57:59-67
Xia, Yunfeng; Entman, Mark L; Wang, Yanlin (2013) CCR2 regulates the uptake of bone marrow-derived fibroblasts in renal fibrosis. PLoS One 8:e77493

Showing the most recent 10 out of 27 publications