Cell differentiation requires exquisite precision in the control of gene expression, principally through transcription factors that either activate or repress genes. Perturbations in gene regulation have profound consequences in development and disease, and this is particularly evident with respect to the three muscle types. While each muscle type has a unique transcriptional program linked to target gene expression, there is some overlap in the expression of genes between them during development and disease. Thus, it is of critical importance to elucidate the transcriptional circuitry underlying muscle-restricted gene expression in order to develop novel approaches to redirect programs of gene expression that run askew and to potentially optimize conditions for the differentiation of stem cells into muscle. Smooth muscle cells (SMC), for example, are notoriously flexible in their genetic program of differentiation with documented evidence for both transdifferentiation and phenotypic modulation to more primitive states. Myocardin (Myocd), a potent coactivator of the SRF transcription factor, is highly restricted to SMC, can execute a near complete program of SMC differentiation, and is modulated in disease states. Though Myocd activates a number of SMC contractile genes, there is little knowledge as to its role in eliciting SMC growth suppression or contractile activity. Further, we have yet to define Myocd's full potential in regulating gene expression. Strong preliminary data in this proposal show that Myocd can elicit SMC contractile competence and growth suppression while repressing the skeletal muscle program of differentiation. Thus, we hypothesize that Myocd is a bifunctional regulator of muscle differentiation. We propose three specific aims to test this thesis using innovative methods in genetics.
In Aim 1, we will test the hypothesis that Myocd is a sufficient and necessary activator of the SMC contractile phenotype by altering Myocd expression in cells and transgenic animals to determine effects on gene expression, growth, and contractile competence.
In Aim 2, we will test the hypothesis that Myocd is a potent repressor for the skeletal muscle program of differentiation using in vitro and in vivo models aimed at illuminating mechanisms underlying this novel function of Myocd.
Aim 3 will test the hypothesis that Myocd is expressed in common progenitors for skeletal muscle and SMC utilizing new lineage tracing transgenic mice. Collectively, the planned studies will yield novel insight into Myocd's function as both a mediator of the SMC contractile phenotype and as a repressor for skeletal muscle fate. Such information has enormous implications for modulating gene expression programs in the setting of muscle disease and stem cell differentiation.

Public Health Relevance

How is a cell's identity achieved and maintained and what drives a cell to change its characteristics in disease? One way is by regulating genes. Here, we propose studies aimed at one such regulator of genes (myocardin) that has the ability to promote one muscle cell type over another. This information has direct applications to a wide variety of diseases including those of the heart and blood vessels, Alzheimer's disease, and asthma.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Vascular Cell and Molecular Biology Study Section (VCMB)
Program Officer
Gao, Yunling
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Rochester
Internal Medicine/Medicine
Schools of Dentistry
United States
Zip Code
Bell, Robert D; Long, Xiaochun; Lin, Mingyan et al. (2014) Identification and initial functional characterization of a human vascular cell-enriched long noncoding RNA. Arterioscler Thromb Vasc Biol 34:1249-59
Long, Xiaochun; Cowan, Sarah L; Miano, Joseph M (2013) Mitogen-activated protein kinase 14 is a novel negative regulatory switch for the vascular smooth muscle cell contractile gene program. Arterioscler Thromb Vasc Biol 33:378-86
Kitchen, Chad M; Cowan, Sarah L; Long, Xiaochun et al. (2013) Expression and promoter analysis of a highly restricted integrin alpha gene in vascular smooth muscle. Gene 513:82-9
Imamura, Masaaki; Sugino, Yoshio; Long, Xiaochun et al. (2013) Myocardin and microRNA-1 modulate bladder activity through connexin 43 expression during post-natal development. J Cell Physiol 228:1819-26
Nanda, Vivek; Miano, Joseph M (2012) Leiomodin 1, a new serum response factor-dependent target gene expressed preferentially in differentiated smooth muscle cells. J Biol Chem 287:2459-67
Xie, Wei-Bing; Li, Zuguo; Miano, Joseph M et al. (2011) Smad3-mediated myocardin silencing: a novel mechanism governing the initiation of smooth muscle differentiation. J Biol Chem 286:15050-7
Albinsson, Sebastian; Skoura, Athanasia; Yu, Jun et al. (2011) Smooth muscle miRNAs are critical for post-natal regulation of blood pressure and vascular function. PLoS One 6:e18869
Benson, Craig C; Zhou, Qian; Long, Xiaochun et al. (2011) Identifying functional single nucleotide polymorphisms in the human CArGome. Physiol Genomics 43:1038-48
Park, Chanjae; Hennig, Grant W; Sanders, Kenton M et al. (2011) Serum response factor-dependent MicroRNAs regulate gastrointestinal smooth muscle cell phenotypes. Gastroenterology 141:164-75
Sullivan, Amy L; Benner, Christopher; Heinz, Sven et al. (2011) Serum response factor utilizes distinct promoter- and enhancer-based mechanisms to regulate cytoskeletal gene expression in macrophages. Mol Cell Biol 31:861-75

Showing the most recent 10 out of 18 publications