Tissue engineering is a potentially powerful method to treat diabetes, heart failure and liver disease. Present tissue engineering approaches generally involve seeding cells onto biodegradable polymeric scaffolds. Current limitations with tissue engineering scaffolds include their inability to generate vascularized tissues, uniformly seed cells throughout the constructs, or mimic the complex cellular microenvironment. We hypothesize that by using the principles of life science, biomaterials science, and microengineering, it will be possible to develop 3D tissue-engineered constructs with controlled microvasculature and tissue architecture. We intend to use cell-laden hydrogels for fabricating microengineered tissue constructs, and to examine the functionality and applicability of these constructs by using cadiomyocytes as a tissue model. We propose a 3-step strategy to accomplish this task. Firstly, we will develop novel hydrogels comprised of natural and biodegradable materials with improved mechanical properties and favorable to cell-encapsulation. Then, we will investigate approaches to engineer the microvasculature within these hydrogels by fabricating an interconnected network of microchannels and macropores. Lastly, we will incorporate additional complexity into the cell-laden hydrogels to generate 3D tissues and replicate the cellular microenvironment.
The specific aims of our project are: 1. To develop methods for fabricating biodegradable hydrogels with controlled mechanical, chemical and biological properties for microscale tissue engineering applications;2. To engineer tissue constructs using cell-laden hydrogels incorporated with a microvasculature comprising of an interconnected network of microchannels and macropores;3. To engineer biological complexity within the microfabricated cell-laden scaffolds to generate functional 3D cardiac tissue constructs. Public Health Relevance Statement (provided by applicant): The development of a novel microscale 3D vascularized tissue engineered constructs have tremendous potential applications in the treatment of many different disease, including heart diseases. We will develop 3D tissues using novel hydrogels and provide vasculature to supply nutrients to the engineered tissue.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZEB1-OSR-D (J1))
Program Officer
Lundberg, Martha
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brigham and Women's Hospital
United States
Zip Code
Sugiura, Shinji; Cha, Jae Min; Yanagawa, Fumiki et al. (2016) Dynamic three-dimensional micropatterned cell co-cultures within photocurable and chemically degradable hydrogels. J Tissue Eng Regen Med 10:690-9
Hjortnaes, Jesper; Goettsch, Claudia; Hutcheson, Joshua D et al. (2016) Simulation of early calcific aortic valve disease in a 3D platform: A role for myofibroblast differentiation. J Mol Cell Cardiol 94:13-20
Bagherifard, Sara; Tamayol, Ali; Mostafalu, Pooria et al. (2016) Dermal Patch with Integrated Flexible Heater for on Demand Drug Delivery. Adv Healthc Mater 5:175-84
Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara et al. (2016) Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving. Adv Healthc Mater 5:751-66
Shin, Su Ryon; Li, Yi-Chen; Jang, Hae Lin et al. (2016) Graphene-based materials for tissue engineering. Adv Drug Deliv Rev 105:255-274
Bersini, Simone; Yazdi, Iman K; Talò, Giuseppe et al. (2016) Cell-microenvironment interactions and architectures in microvascular systems. Biotechnol Adv 34:1113-30
Tamayol, Ali; Akbari, Mohsen; Zilberman, Yael et al. (2016) Flexible pH-Sensing Hydrogel Fibers for Epidermal Applications. Adv Healthc Mater 5:711-9
Colosi, Cristina; Shin, Su Ryon; Manoharan, Vijayan et al. (2016) Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink. Adv Mater 28:677-84
Shin, Su Ryon; Farzad, Raziyeh; Tamayol, Ali et al. (2016) A Bioactive Carbon Nanotube-Based Ink for Printing 2D and 3D Flexible Electronics. Adv Mater 28:3280-9
Tsang, Kelly M C; Annabi, Nasim; Ercole, Francesca et al. (2015) Facile One-step Micropatterning Using Photodegradable Methacrylated Gelatin Hydrogels for Improved Cardiomyocyte Organization and Alignment. Adv Funct Mater 25:977-986

Showing the most recent 10 out of 139 publications