Heparan sulfate (HS) is an essential glycan that is present in large quantities on the cell surface and in the extracellular matrix. HS participates in a variety of physiological and pathophysiological functions, including blood coagulation, inflammatory response and cell differentiation. HS is a highly sulfated polysaccharide. Heparin, a special form of HS, is a commonly used anticoagulant drug. The wide range of biological functions of HS attracts considerable interest in exploiting heparin or heparin-like molecules for the development of anticancer and antiviral drugs. The uniquely distributed sulfation pattern of HS is believed to regulate its functional specificity. However, chemical synthesis of HS, especially those larger than hexasaccharides, is extremely difficult. Using HS biosynthetic enzymes, our labs can produce an array of HS with unique sulfation patterns and functions. Our success has proved the feasibility of conducting enzyme-based synthesis of HS with unique biological activities. The long term aim of this project is to develop a method to synthesize HS with high structural precision. Our hypothesis is that the distribution of N- sulfoglucosamine residues determines the susceptibility of all subsequent modifications during heparan sulfate biosynthesis, including epimerization, 2-O-sulfation, 6-O- sulfation, and 3-O-sulfation. In this proposal, we will synthesize structurally defined oligosaccharides carrying N-sulfoglucosamine residues using glycosyl transferases. We will then determine the substrate specificities of a variety of HS biosynthetic enzymes with the aim of precisely positioning the 6-O-sulfo and 3-O-sulfo groups as well as 2-O- sulfo iduronic acid within oligosaccharides. Finally, we plan to utilize this method to investigate novel anticoagulant HS structures. The success of this project will lead a comprehensive new approach to investigate the structure and function relationship of HS, potentially leading to the development of novel HS-based therapeutic reagents. Public Health Relevance: Heparan sulfate (HS) is a highly sulfated polysaccharide. Heparin, a special form of HS, is a commonly used anticoagulant drug. The wide range of biological functions of HS attracts considerable interest in exploiting heparin or heparin-like molecules for the development of anticancer and antiviral drugs. The uniquely distributed sulfation pattern of HS is believed to regulate its functional specificity. The long term aim of this project is to develop a method to synthesize HS with high structural precision. The success of this project will lead a comprehensive new approach to investigate the structure and function relationship of HS, potentially leading to the development of novel HS-based therapeutic reagents.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL094463-04
Application #
8212485
Study Section
Intercellular Interactions (ICI)
Program Officer
Sarkar, Rita
Project Start
2009-02-13
Project End
2013-07-30
Budget Start
2012-02-01
Budget End
2013-07-30
Support Year
4
Fiscal Year
2012
Total Cost
$399,536
Indirect Cost
$78,776
Name
University of North Carolina Chapel Hill
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Cai, Chao; Dickinson, Demetria M; Li, Lingyun et al. (2014) Fluorous-assisted chemoenzymatic synthesis of heparan sulfate oligosaccharides. Org Lett 16:2240-3
Fu, Li; Li, Lingyun; Cai, Chao et al. (2014) Heparin stability by determining unsubstituted amino groups using hydrophilic interaction chromatography mass spectrometry. Anal Biochem 461:46-8
Sterner, Eric; Li, Lingyun; Paul, Priscilla et al. (2014) Assays for determining heparan sulfate and heparin O-sulfotransferase activity and specificity. Anal Bioanal Chem 406:525-36
Liu, Zhangguo; Zhang, Fuming; Li, Lingyun et al. (2014) Compositional analysis and structural elucidation of glycosaminoglycans in chicken eggs. Glycoconj J 31:593-602
Xu, Yongmei; Cai, Chao; Chandarajoti, Kasemsiri et al. (2014) Homogeneous low-molecular-weight heparins with reversible anticoagulant activity. Nat Chem Biol 10:248-50
Liu, Chunhui; Sheng, Juzheng; Krahn, Juno M et al. (2014) Molecular mechanism of substrate specificity for heparan sulfate 2-O-sulfotransferase. J Biol Chem 289:13407-18
Chandarajoti, Kasemsiri; Xu, Yongmei; Sparkenbaugh, Erica et al. (2014) De novo synthesis of a narrow size distribution low-molecular-weight heparin. Glycobiology 24:476-86
Hsieh, Po-Hung; Xu, Yongmei; Keire, David A et al. (2014) Chemoenzymatic synthesis and structural characterization of 2-O-sulfated glucuronic acid-containing heparan sulfate hexasaccharides. Glycobiology 24:681-92
Gasimli, Leyla; Glass, Charles A; Datta, Payel et al. (2014) Bioengineering murine mastocytoma cells to produce anticoagulant heparin. Glycobiology 24:272-80
Liu, Jian; Linhardt, Robert J (2014) Chemoenzymatic synthesis of heparan sulfate and heparin. Nat Prod Rep 31:1676-85

Showing the most recent 10 out of 37 publications