Malformations of cardiac valvuloseptal structures are prevalent causes of congenital heart diseases (CHDs), which occur in as many as 1% of newborns and remain the leading cause of infant morbidity and mortality. The long term goal of this study is to identify the molecular, cellular, and genetic mechanisms governing normal valvuloseptal morphogenesis and to reveal their contributions to CHDs. Valvuloseptal development in the atrioventricular canal (AVC) region is initiated with cushion formation by regional expansion of extracellular matrix (ECM) at ~E9.0 in mouse embryonic hearts. Shortly thereafter, in response to stimulatory signals released from the myocardium, a subgroup of endocardial cells in the AVC transdifferentiate into mesenchymal cells and migrate into the ECM. The cellularized cushions serve as the primordia of valves and septa, and are further remodeled into final structures through complicated maturation processes. Bone Morphogenic Protein (BMP) pathways play essential roles during AV cushion formation, cellularization, and remodeling;mutations that disturb BMP signaling cause various valvuloseptal defects both in animal models and in human patients. Nevertheless, the downstream genes that mediate the complex activities of BMP signaling remain elusive. To facilitate the application of cellular and molecular approaches to study AV cushion morphogenesis, we developed a temperature sensitive immortal AV cushion mesenchymal cell line, tsA58-AVM. To the best of our knowledge, no other permanent cushion cell line has been reported in the literature. Using this unique cell culture system, we identified Sema6D as a novel regulatory target of BMP signaling in AV cushions. While Semaphorins were initially recognized as phylogenetically conserved neuronal guidance cues, their functions have now been implicated in regulating cell morphology, proliferation, adhesion and migration during various biological/pathological processes. No study in the literature has directly addressed the potential roles of Semaphorin signaling during AV valvuloseptal morphogenesis. Our preliminary studies using in vitro cultured cells and ex vivo cultured AV tissues suggested that Sema6D promotes cushion mesenchyme formation and migration. Moreover, we established a conditional knockout mouse line of Sema6D, and our initial studies using this line supported the essential in vivo role of Sema6D for normal AV cushion cellularization. We hypothesize that Sema6D is a key BMP regulatory target critical for promoting AV cushion mesenchyme formation and migration during valvuloseptal development.
Three specific aims are outlined in this proposal.
In Aim 1, we will determine the cellular activity of Sema6D in endocardial and mesenchymal cells using immortal cell lines.
In Aim 2, we will test the functional interaction between Sema6D and BMP signaling during AV cushion mesenchyme formation and migration using ex vivo cultured AV tissues.
In Aim 3, we will determine the in vivo function of Sema6D during AV cushion morphogenesis through a conditional gene inactivation approach. Successful accomplishment of this study will significantly advance our knowledge of the molecular mechanisms underlying normal valvuloseptal formation and CHDs.

Public Health Relevance

Malformations of cardiac valvuloseptal structures account for a large proportion of congenital heart diseases. BMP signaling plays a critical role in atrioventricular (AV) valvuloseptal development. We have identified Sema6D as a downstream regulatory target of BMP signaling in AV cushions, and will apply multiple complementary approaches to explore the potentially critical function of Sema6D in supporting normal development of AV cushions.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Cardiovascular Differentiation and Development Study Section (CDD)
Program Officer
Schramm, Charlene A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Alabama Birmingham
Schools of Medicine
United States
Zip Code
Peng, Yin; Song, Lanying; Zhao, Mei et al. (2014) Critical roles of miRNA-mediated regulation of TGF? signalling during mouse cardiogenesis. Cardiovasc Res 103:258-67
Liu, Yuelong; Harmelink, Cristina; Peng, Yin et al. (2014) CHD7 interacts with BMP R-SMADs to epigenetically regulate cardiogenesis in mice. Hum Mol Genet 23:2145-56
Peng, Yin; Zhao, Shaomin; Song, Langying et al. (2013) Sertad1 encodes a novel transcriptional co-activator of SMAD1 in mouse embryonic hearts. Biochem Biophys Res Commun 441:751-6
Harmelink, Cristina; Peng, Yin; DeBenedittis, Paige et al. (2013) Myocardial Mycn is essential for mouse ventricular wall morphogenesis. Dev Biol 373:53-63
DeBenedittis, Paige; Jiao, Kai (2011) Alternative splicing of T-box transcription factor genes. Biochem Biophys Res Commun 412:513-7
Debenedittis, Paige; Harmelink, Cristina; Chen, Yunjia et al. (2011) Characterization of the novel interaction between muskelin and TBX20, a critical cardiogenic transcription factor. Biochem Biophys Res Commun 409:338-43
Song, Langying; Zhao, Mei; Wu, Bingruo et al. (2011) Cell autonomous requirement of endocardial Smad4 during atrioventricular cushion development in mouse embryos. Dev Dyn 240:211-20
Nie, Xuguang; Brown, Christopher B; Wang, Qin et al. (2011) Inactivation of Bmp4 from the Tbx1 expression domain causes abnormal pharyngeal arch artery and cardiac outflow tract remodeling. Cells Tissues Organs 193:393-403