To fulfill the roles the lymphatic system plays in body fluid regulation, macromolecular homeostasis, lipid absorption, immune function, it must transport lymph from the interstitium, along the lymphatic network, through the nodes, into the great veins of the neck. Lymphatic muscle utilizes a unique combination of tonic and phasic contractions and muscle contractile proteins to generate and control lymph flow/transport. Contraction of lymphatic muscle is driven and regulated by both physical and ionic events. Stretch of the lymphatic wall is the most well documented physical stimulator of lymphatic function. Lymphatic muscle ionic events drive the electrical activity and intracellular calcium to modulate contraction. However, the ionic mechanisms regulating lymphatic muscle contraction and how stretch activates them are relatively unknown. To gain a better understanding of the regulation of lymphatic function, we propose to investigate the ionic mechanisms of lymphatic muscle contraction and how they are affected by stretch in isolated rat mesenteric lymphatics. Dysfunctional lymphatics result in a wide range of clinical problems. This project will substantially advance our understanding of lymphatic biology and provide the basis for the eventual development of therapeutic strategies to diagnose and treat lymphatic contractile dysfunction.

Public Health Relevance

To fulfill the roles the lymphatic system plays in body fluid and macromolecular regulation, lipid absorption and immune function, it transports lymph from the interstitium, along the lymphatic network, through the nodes, into the great veins of the neck using contractions of the lymphatic muscle to generate and control lymph flow. However, the ionic mechanisms regulating lymphatic muscle contraction and how stretch (the predominant physical factor that regulate lymph pumping) activates them are unknown. This project will substantially advance our understanding of lymphatic biology and provide the basis for the development of therapeutic strategies to treat lymphatic contractile dysfunction, which can result in a wide range of clinical problems.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
7R01HL096552-04
Application #
8309042
Study Section
Special Emphasis Panel (ZRG1-CVS-P (50))
Program Officer
Tolunay, Eser
Project Start
2009-09-01
Project End
2014-07-31
Budget Start
2012-08-01
Budget End
2014-07-31
Support Year
4
Fiscal Year
2012
Total Cost
$403,993
Indirect Cost
$83,586
Name
Texas A&M University
Department
Physiology
Type
Schools of Medicine
DUNS #
835607441
City
College Station
State
TX
Country
United States
Zip Code
77845
Liao, Shan; von der Weid, Pierre-Yves (2014) Inflammation-induced lymphangiogenesis and lymphatic dysfunction. Angiogenesis 17:325-34
Dougherty, Patrick J; Nepiyushchikh, Zhanna V; Chakraborty, Sanjukta et al. (2014) PKC activation increases Ca²? sensitivity of permeabilized lymphatic muscle via myosin light chain 20 phosphorylation-dependent and -independent mechanisms. Am J Physiol Heart Circ Physiol 306:H674-83
Zhou, Meng-Hua; Zheng, Hongying; Si, Hongjiang et al. (2014) Stromal interaction molecule 1 (STIM1) and Orai1 mediate histamine-evoked calcium entry and nuclear factor of activated T-cells (NFAT) signaling in human umbilical vein endothelial cells. J Biol Chem 289:29446-56
von der Weid, Pierre-Yves; Lee, Stewart; Imtiaz, Mohammad S et al. (2014) Electrophysiological properties of rat mesenteric lymphatic vessels and their regulation by stretch. Lymphat Res Biol 12:66-75
Bridenbaugh, Eric A; Wang, Wei; Srimushnam, Maya et al. (2013) An immunological fingerprint differentiates muscular lymphatics from arteries and veins. Lymphat Res Biol 11:155-71
Zawieja, Scott D; Wang, Wei; Wu, Xin et al. (2012) Impairments in the intrinsic contractility of mesenteric collecting lymphatics in a rat model of metabolic syndrome. Am J Physiol Heart Circ Physiol 302:H643-53
Gashev, Anatoliy A; Li, Jieli; Muthuchamy, Mariappan et al. (2012) Adenovirus-mediated gene transfection in the isolated lymphatic vessels. Methods Mol Biol 843:199-204
Nepiyushchikh, Zhanna V; Chakraborty, Sanjukta; Wang, Wei et al. (2011) Differential effects of myosin light chain kinase inhibition on contractility, force development and myosin light chain 20 phosphorylation of rat cervical and thoracic duct lymphatics. J Physiol 589:5415-29
Wang, Wei; Hein, Travis W; Zhang, Cuihua et al. (2011) Oxidized low-density lipoprotein inhibits nitric oxide-mediated coronary arteriolar dilation by up-regulating endothelial arginase I. Microcirculation 18:36-45
Akl, Tony J; Nepiyushchikh, Zhanna V; Gashev, Anatoliy A et al. (2011) Measuring contraction propagation and localizing pacemaker cells using high speed video microscopy. J Biomed Opt 16:026016