The development of a bioengineered heparin from a non-animal source is in response to a health crisis that took place in early 2008. This crisis involved the introduction of an oversulfated chondroitin sulfate into heparin produced from hogs in China leading to the death of nearly 100 Americans. Recent research in our laboratories suggests that it is now possible to prepare a bioengineered heparin from non-animal sources using fermentation combined with chemoenzymatic methods. The proposed 5-year project is a translational and multi-disciplinary research effort involving the Rensselaer Polytechnic Institute, University of North Carolina and Albany College of Pharmacy, aimed at producing kilogram quantities of non-animal sourced bioengineered heparin. By controlling the process steps this bioengineered heparin will be prepared with a structure identical to the pharmaceutical heparin prepared from animals. Both chemical and bioequivalence studies will provide the necessary pre-clinical data required to carry bioengineered heparin forward as a generic heparin. The results of this 5-year translational bioengineering research project will be the synthesis of 1 kilogram of non-animal sourced heparin, which serves as a well defined deliverable that is chemically and biologically equivalent to USP heparin. A second well-defined deliverable will be an optimized and cost effective process that can be used ultimately to generate bioengineered, non-animal heparin at scales sufficient to satisfy the therapeutic needs in the US. This material and the accompanying process will be made available to both large and small business partners interested in moving this bioengineered heparin into human clinical trails as a novel and safer replacement for animal sourced heparin. We hypothesize that application of recombinantly-expressed biosynthetic enzymes in a well controlled process can afford a bioengineered heparin that is the generic equivalent of USP heparin. Furthermore, we envision that this bioengineered heparin will be safer for patients and can be prepared at costs competitive to heparin obtained from animal tissues. There are four specific aims of this proposal. 1. Optimize the production of bioengineered heparin;2. Confirm chemical equivalence of bioengineered heparin with USP heparin;3. Confirm bioequivalence of bioengineered heparin with USP heparin;and 4. Scale-up and produce a kilogram of bioengineered heparin while maintaining chemical and bioequivalence.

Public Health Relevance

The proposed effort impacts human health by developing a process to prepare a bioengineered heparin that is chemically and biologically equivalent to pharmaceutical heparin currently prepared from pig intestine. This process will improve the safety and uniformity of heparin and prevent future contamination or adulteration of this important drug that is administered to several hundred thousand patients each day in the US.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Biomaterials and Biointerfaces Study Section (BMBI)
Program Officer
Sarkar, Rita
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Rensselaer Polytechnic Institute
Schools of Arts and Sciences
United States
Zip Code
Jasper, John P; Zhang, Fuming; Poe, Russell B et al. (2015) Stable isotopic analysis of porcine, bovine, and ovine heparins. J Pharm Sci 104:457-63
Li, Guoyun; Steppich, Julia; Wang, Zhenyu et al. (2014) Bottom-up low molecular weight heparin analysis using liquid chromatography-Fourier transform mass spectrometry for extensive characterization. Anal Chem 86:6626-32
Gasimli, Leyla; Hickey, Anne Marie; Yang, Bo et al. (2014) Changes in glycosaminoglycan structure on differentiation of human embryonic stem cells towards mesoderm and endoderm lineages. Biochim Biophys Acta 1840:1993-2003
Beaudet, Julie M; Mansur, Leandra; Joo, Eun Ji et al. (2014) Characterization of human placental glycosaminoglycans and regional binding to VAR2CSA in malaria infected erythrocytes. Glycoconj J 31:109-16
Kwon, Seok Joon; Jeong, Eun Ji; Yoo, Yung Choon et al. (2014) High sensitivity detection of active botulinum neurotoxin by glyco-quantitative polymerase chain-reaction. Anal Chem 86:2279-84
Gasimli, Leyla; Glass, Charles A; Datta, Payel et al. (2014) Bioengineering murine mastocytoma cells to produce anticoagulant heparin. Glycobiology 24:272-80
Liu, Jian; Linhardt, Robert J (2014) Chemoenzymatic synthesis of heparan sulfate and heparin. Nat Prod Rep 31:1676-85
Cai, Chao; Dickinson, Demetria M; Li, Lingyun et al. (2014) Fluorous-assisted chemoenzymatic synthesis of heparan sulfate oligosaccharides. Org Lett 16:2240-3
Fu, Li; Li, Lingyun; Cai, Chao et al. (2014) Heparin stability by determining unsubstituted amino groups using hydrophilic interaction chromatography mass spectrometry. Anal Biochem 461:46-8
Sterner, Eric; Li, Lingyun; Paul, Priscilla et al. (2014) Assays for determining heparan sulfate and heparin O-sulfotransferase activity and specificity. Anal Bioanal Chem 406:525-36

Showing the most recent 10 out of 62 publications