The main aims of this multiple-PI proposal are to evaluate the safety and eficacy of, and the host immune response to, the next generation of recombinant adeno-associated virus (AAV) vectors that we have developed, in small and large animal models of human liver diseases in general, and hemophilia in particular. AAV vectors have gained attention as an alternative to the more commonly used retrovirus and adenovirus vectors, and are in use in Phase I/II clinical trials for gene therapy of a number of diseases. However, relatively large vector doses are needed to achieve therapeutic benefits. Large vector doses also trigger an immune response as a significant fraction of the vectors fails to traffic efficiently to the nucleus, and is targeted for degradation by the host cell proteasome machinery. Our recent studies have yielded insights into key steps in intracellular trafficking of AAV, and led to the development of novel AAV vectors that are capable of high-efficiency transduction at lower doses. We will test the following hypotheses: a. Combination of specific tyrosine mutations in AAV2 capsids will further reduce the vector dose needed for high-efficiency transduction, and corresponding mutations in tyrosine residues in AAV8 and AAV5 serotype vectors will lead high-efficiency transduction of murine and canine hepatocytes. b. Novel Baculovirus system-produced rAAV vectors, characterized by higher VP1 capsid protein stoichiometric content, will exhibit superior transduction properties in target tissues. c. Tyrosine-mutant AAV vectors will elicit a reduced host cell immune response, and provide therapeutic benefits at lower doses. The following three Specific Aims will be pursued: 1. Development of AAV2 vectors containing multiple tyrosine-mutations, elucidation of the underlying mechanism of transduction by the most efficient vector in vitro and in vivo, and comparative analysis with AAV8 and AAV5 vectors. 2. Development of the next generation of Sf9-based stable cell lines for the production of highly infectious rAAV of alternative serotypes. 3. Treatment of murine and canine hemophilia B with optimal tyrosine-mutant AAV2, AAV8, and AAV5 serotype vectors and evaluation of immune responses to vector and coagulation factor IX transgene product. The knowledge gained from these studies will not only shed light on the AAV-host cell interactions, but will also be applicable in further improvements in recombinant AAV vectors for their potential use in gene therapy of human liver diseases in general, and hemophilia in particular.

Public Health Relevance

The main aim of this proposal is to develop the next generation of vectors with which a therapeutic gene can be safely delivered to patients with a bleeding disorder called hemophilia B. These vectors are derived from a virus that causes no known disease, and is therefore, expected to be safer. The development of such a vector for the potential treatment and cure of hemophilia therefore has relevance to public health.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL097088-04
Application #
8450212
Study Section
Special Emphasis Panel (ZRG1-GGG-A (91))
Program Officer
Link, Rebecca P
Project Start
2010-07-15
Project End
2014-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
4
Fiscal Year
2013
Total Cost
$593,093
Indirect Cost
$184,739
Name
University of Florida
Department
Pediatrics
Type
Schools of Medicine
DUNS #
969663814
City
Gainesville
State
FL
Country
United States
Zip Code
32611
Marsic, Damien; Zolotukhin, Sergei (2016) Altering Tropism of rAAV by Directed Evolution. Methods Mol Biol 1382:151-73
Ling, Chen; Bhukhai, Kanit; Yin, Zifei et al. (2016) High-Efficiency Transduction of Primary Human Hematopoietic Stem/Progenitor Cells by AAV6 Vectors: Strategies for Overcoming Donor-Variation and Implications in Genome Editing. Sci Rep 6:35495
Zolotukhin, Irene; Markusic, David M; Palaschak, Brett et al. (2016) Potential for cellular stress response to hepatic factor VIII expression from AAV vector. Mol Ther Methods Clin Dev 3:16063
Srivastava, Arun (2016) In vivo tissue-tropism of adeno-associated viral vectors. Curr Opin Virol 21:75-80
Vercauteren, Koen; Hoffman, Brad E; Zolotukhin, Irene et al. (2016) Superior In vivo Transduction of Human Hepatocytes Using Engineered AAV3 Capsid. Mol Ther 24:1042-9
Srivastava, Arun (2016) Adeno-Associated Virus: The Naturally Occurring Virus Versus the Recombinant Vector. Hum Gene Ther 27:1-6
Ling, Chen; Yin, Zifei; Li, Jun et al. (2016) Strategies to generate high-titer, high-potency recombinant AAV3 serotype vectors. Mol Ther Methods Clin Dev 3:16029
Perrin, George Q; Zolotukhin, Irene; Sherman, Alexandra et al. (2016) Dynamics of antigen presentation to transgene product-specific CD4(+) T cells and of Treg induction upon hepatic AAV gene transfer. Mol Ther Methods Clin Dev 3:16083
Marsic, Damien; Méndez-Gómez, Héctor R; Zolotukhin, Sergei (2015) High-accuracy biodistribution analysis of adeno-associated virus variants by double barcode sequencing. Mol Ther Methods Clin Dev 2:15041
Mietzsch, Mario; Casteleyn, Vincent; Weger, Stefan et al. (2015) OneBac 2.0: Sf9 Cell Lines for Production of AAV5 Vectors with Enhanced Infectivity and Minimal Encapsidation of Foreign DNA. Hum Gene Ther 26:688-97

Showing the most recent 10 out of 42 publications