Asthmatic human airway smooth muscle (HASM) differs from normal HASM in at least three ways - dysregu- lated contraction, myocyte hypertrophy, and abnormal chemokine elaboration - but the mechanisms that un- derlie these asthmatic HASM phenotypes remain poorly understood. We have discovered that the HLA-G - LILRB - SHP signaling pathway, which is known to regulate immune system responses, also operates in HASM. Importantly, signaling through this pathway promotes each of the asthmatic HASM characteristics listed above. The major objective of this proposal is to analyze the inflammatory and genetic regulation of this path- way in HASM in order to identify novel strategies that prevent or reverse these asthmatic HASM phenotypes. In preliminary studies, we found that LILRB1, LILRB2, and their family member LILRB4, and SHP2 (but not SHP1) are all expressed in human ASM;that LILRB receptors activate SHP2 within human airway myocytes; and that SHP2 increases the force of contraction and elasticity, stimulates Akt signaling and hypertrophy, and activates NF?B and chemokine elaboration. Thus, the HLA-G - LILRB - SHP2 signaling pathway is intact in HASM, and its activation imparts asthma-like phenotypes to airway muscle. Furthermore, the HLA-G - LILRB - SHP2 axis may be abnormally exaggerated in asthma because: soluble HLA-G is three times more abundant in BAL fluid of asthmatic subjects than normal volunteers;several immunomodulatory molecules found in asthmatic airways can increase LILRB expression;and genetic variations in each component of this pathway (HLA-G, LILRB1, LILRB2, LILRB4, and PTPN11, which encodes SHP2) are associated with asthma and/or bronchial hyperresponsiveness. Together, these data suggest the novel and biologically plausible hypotheses that overactive HLA-G - LILRB - SHP2 signaling imparts an asthmatic HASM phenotype, and that therapeutic intervention to interfere with this signaling pathway might ameliorate ASM abnormality in asthma. To test these hypotheses, we propose to: 1) determine how selected immunomodulatory molecules influence HLA-G - LILRB - SHP2 signaling in normal and asthmatic HASM;2) evaluate how genetic variations in LILRB1, LILRB2, or LILRB4 that are associated with BHR or asthma influence HLA-G - LILRB - SHP2 signaling in normal or asthmatic HASM;and 3) delineate the molecular mechanisms by which altered SHP2 signaling causes normal HASM to acquire an asthmatic HASM phenotype. These studies will reveal how HLA-G - LILRB - SHP2 signaling regulates ASM function;which genetic and inflammatory mechanisms modulate that regulatory role;and whether inhibition of this pathway can prevent or reverse acquisition of the asthmatic HASM phenotype.

Public Health Relevance

Abnormalities of airway smooth muscle contribute to asthma pathogenesis. We have discovered that a signal- ing system (the HLA-G - LILRB - SHP2 pathway) that was not previously known to operate in airway smooth muscle indeed does so, and have gathered evidence that activation of this pathway might promote the devel- opment of asthmatic smooth muscle abnormalities. The studies proposed here will evaluate the genetic and inflammatory mechanisms that might exaggerate HLA-G - LILRB - SHP2 signaling in asthmatic airway smooth muscle, and so may suggest novel therapeutic strategies to oppose these pathological effects.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1-CSR-A (M1))
Program Officer
Banks-Schlegel, Susan P
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Chicago
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Comer, Brian S; Camoretti-Mercado, Blanca; Kogut, Paul C et al. (2014) MicroRNA-146a and microRNA-146b expression and anti-inflammatory function in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 307:L727-34
Dowell, Maria L; Lavoie, Tera L; Solway, Julian et al. (2014) Airway smooth muscle: a potential target for asthma therapy. Curr Opin Pulm Med 20:66-72
Doeing, Diana C; Solway, Julian (2013) Airway smooth muscle in the pathophysiology and treatment of asthma. J Appl Physiol 114:834-43
Barrow, Alexander David; Raynal, Nicolas; Andersen, Thomas Levin et al. (2011) OSCAR is a collagen receptor that costimulates osteoclastogenesis in DAP12-deficient humans and mice. J Clin Invest 121:3505-16
Jude, Joseph A; Solway, Julian; Panettieri Jr, Reynold A et al. (2010) Differential induction of CD38 expression by TNF-{alpha} in asthmatic airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 299:L879-90