Congenital heart disease, the most common birth defect, is frequently associated with deficient heart muscle, leading to heart failure. Currently, the only way to replace heart muscle cells, cardiomyocytes, is through heart transplantation. Regenerative therapies would transform the treatment of congenital heart disease and save many lives. We study the mechanisms of cardiomyocyte proliferation with the aim of increasing this process therapeutically. We have previously demonstrated that extracellular factors can be used to stimulate cardiomyocyte proliferation, leading to improved myocardial structure and function in animal models of heart failure. The clinical translation of this innovative approach requires understanding of how cardiomyocytes are able to perform two completely different tasks: contraction of myofibrils and cell division. We have shown that during cell division cardiomyocytes divide their contractile apparati, which consist of myofibrils, but the detailed mechanisms are not understood. It has been shown that myofibril formation and cardiomyocyte cytokinesis are controlled by mechanisms involving p38? mitogen-activated protein kinase (MAPK), but the role of p38? in myofibril disassembly remains unknown. Our preliminary data indicate that cardiomyocyte cell cycle activity in humans is highest in infants, suggesting that regenerative cardiomyocyte proliferation may be most effectively stimulated in this age group. We will therefore perform our investigations in neonatal animals. We hypothesize that myofibril disassembly in proliferating neonatal cardiomyocytes is a conserved, multi-step process that is controlled by a mechanism involving p38? MAPK and is associated with brief reduction of cardiomyocyte contractile function.
In Aim 1 we will define and characterize the disassembly process.
In Aim 2, we will modify p38 signaling and determine the effects on myofibril disassembly.
In Aim 3, we will determine the effect of myofibril disassembly on cardiomyocyte function in the intact heart. The results of this research should increase the translational potential of regenerative strategies that stimulate cardiomyocyte proliferation.

Public Health Relevance

Congenital heart disease, the most common birth defect, is frequently associated with deficient heart muscle, leading to heart failure. Currently, the only way to replace heart muscle cells, cardiomyocytes, is through heart transplantation. The proposed research will advance the scientific basis for regenerative therapies to treat patients with congenital heart disease. These new therapies should improve the lives of many patients who have heart failure as a complication of congenital heart disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL106302-02
Application #
8207858
Study Section
Development - 1 Study Section (DEV1)
Program Officer
Schramm, Charlene A
Project Start
2010-12-20
Project End
2015-11-30
Budget Start
2011-12-01
Budget End
2012-11-30
Support Year
2
Fiscal Year
2012
Total Cost
$435,000
Indirect Cost
$185,000
Name
Children's Hospital Boston
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Zhang, Cheng-Hai; Kühn, Bernhard (2014) Muscling up the heart: a preadolescent cardiomyocyte proliferation contributes to heart growth. Circ Res 115:690-2
Parodi, Emily M; Kuhn, Bernhard (2014) Signalling between microvascular endothelium and cardiomyocytes through neuregulin. Cardiovasc Res 102:194-204
Senyo, Samuel E; Lee, Richard T; Kühn, Bernhard (2014) Cardiac regeneration based on mechanisms of cardiomyocyte proliferation and differentiation. Stem Cell Res 13:532-41
Khaladkar, Mugdha; Buckley, Peter T; Lee, Miler T et al. (2013) Subcellular RNA sequencing reveals broad presence of cytoplasmic intron-sequence retaining transcripts in mouse and rat neurons. PLoS One 8:e76194
Bersell, Kevin; Choudhury, Sangita; Mollova, Mariya et al. (2013) Moderate and high amounts of tamoxifen in *MHC-MerCreMer mice induce a DNA damage response, leading to heart failure and death. Dis Model Mech 6:1459-69
Kuhn, Bernhard (2013) ERBB2 inhibition and heart failure. N Engl J Med 368:875-6
Wadugu, Brian; Kuhn, Bernhard (2012) The role of neuregulin/ErbB2/ErbB4 signaling in the heart with special focus on effects on cardiomyocyte proliferation. Am J Physiol Heart Circ Physiol 302:H2139-47