The large-conductance, Ca2+-activated K+ channel from cardiac mitochondria (mitoBKCa) is thought to play a role in cardioprotection. MitoBKCa molecular size is uncertain with reported immunochemical signals at ~55 and ~125 kDa. In addition, mitoBKCa molecular identity and its mitochondrial targeting mechanisms remain unknown, while there is scarce information about its functional properties or direct evidence for their role in cardioprotection. Because cardiac mitoBKCa shares conductance, Ca2+ responsiveness, and sensitivity to pharmacological agents with its plasma membrane counterpart known as BKCa (or MaxiK), we expect that mitoBKCa is assembled like BKCa by four pore-forming a subunits with a monomeric mass of ~125 kDa. We will now test the hypotheses that: 1) mitoBKCa and plasma membrane BKCa are encoded by the same gene and splice variation provides BKCa with intrinsic signals for its preferential mitochondrial targeting;2) the normal absence of BKCa from the cardiomyocyte plasmalemma and presence in mitochondria is ruled by both an intrinsic signal(s) within mitoBKCa backbone (i.e. splice insert) either directly or indirectly (i.e. via a chaperone), and by cell-specific mechanisms, and ) mitoBKCa contributes to cardioprotection by regulating mitochondrial calcium retention capacity (CRC) and permeability transition pore (mPTP) opening. Preliminary Data shows: 1) the detection of a ~125 kDa protein in mitochondria by specific anti-BKCa antibodies;2) the detection of all 27 constitutive BKCa exons in isolated cardiomyocyte mRNAs;3) that BKCa isoform containing splice insert DEC (C-terminal insert of 61 amino acids) but not the constitutive form of BKCa (insertless BKCa) is readily targeted to mitochondria in adult cardiomyocytes;4) that mitoBKCa subproteome uncovered as a partner Hsp60, a heat shock protein relevant for folding of mitochondrial imported proteins;and 5) that BKCa gene ablation prevents the cardioprotective action of putative BKCa channel opener NS1619. Overall the data support the above hypotheses, which will be tested using multiple approaches and pursuing the following Specific Aims to: 1. Identify the molecular correlate of cardiac mitoBKCa;2. Functionally validate the identity of cloned putative mitoBKCa;3. Determine signal mechanisms involved in mitoBKCa mitochondrial targeting;and 4. Directly address the role of mitoBKCa in cardioprotection. The outcomes of this program will open the opportunity to study mitoBKCa at the molecular level and advance the cardiac field by: solving mitoBKCa identity, providing information on its targeting mechanisms, and defining its functional properties and role in cardioprotection. Further understanding of the underlying molecular mechanism(s) of mitoBKCa cardioprotective effects will provide new targets for translation into therapeutics.

Public Health Relevance

One of the mechanisms involved in protecting the heart from lack of oxygen like that occurring during heart infarct is thought to be the opening of a mitochondria potassium channel named mitoBKCa. Here, we propose to unveil mitoBKCa molecular identity, the mechanisms that target it to mitochondria and directly demonstrate its role in protecting the heart from injury by oxygen deprivation. The results of this investigation wll allow the advancement of cardioprotective medicine and provide new molecular targets for therapeutics.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL107418-03
Application #
8628868
Study Section
Electrical Signaling, Ion Transport, and Arrhythmias Study Section (ESTA)
Program Officer
Wong, Renee P
Project Start
2012-04-15
Project End
2016-02-29
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
3
Fiscal Year
2014
Total Cost
$1,193,156
Indirect Cost
$417,061
Name
University of California Los Angeles
Department
Anesthesiology
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Wu, Xundong; Toro, Ligia; Stefani, Enrico et al. (2015) Ultrafast photon counting applied to resonant scanning STED microscopy. J Microsc 257:31-8
Kuntamallappanavar, Guruprasad; Toro, Ligia; Dopico, Alex M (2014) Both transmembrane domains of BK ?1 subunits are essential to confer the normal phenotype of ?1-containing BK channels. PLoS One 9:e109306
Zhang, Zhu; Li, Min; Lu, Rong et al. (2014) The angiotensin II type 1 receptor (AT1R) closely interacts with large conductance voltage- and Ca2+-activated K+ (BK) channels and inhibits their activity independent of G-protein activation. J Biol Chem 289:25678-89
Toro, Ligia; Li, Min; Zhang, Zhu et al. (2014) MaxiK channel and cell signalling. Pflugers Arch 466:875-86
Li, Min; Zhang, Zhu; Koh, Huilin et al. (2013) The ýý1-subunit of the MaxiK channel associates with the thromboxane A2 receptor and reduces thromboxane A2 functional effects. J Biol Chem 288:3668-77
Singh, Harpreet; Lu, Rong; Bopassa, Jean C et al. (2013) MitoBK(Ca) is encoded by the Kcnma1 gene, and a splicing sequence defines its mitochondrial location. Proc Natl Acad Sci U S A 110:10836-41