Diminished insulin (INS) sensitivity is a common feature of disease states such as obesity, hypertension and diabetes. Over-nutrition (especially that characterized by excess intake of fat and carbohydrates) is a major factor in the increased prevalence of hypertension and diabetes. These co-morbidities may be driven by a decrease in INS-mediated vasorelaxation and glucose transport in cardiovascular (CV) and skeletal muscle tissue. In addition to over-nutrition, several other mechanisms, such as enhanced activation of the renin- angiotensin-system (RAS), inflammation, and associated abnormalities in INS metabolic signaling, may help explain the linkage between INS resistance and hypertension. There is emerging evidence that over-nutrition and angiotensin II (ANG II) may promote INS resistance through the mammalian target of rapamycin (mTOR)/S6 kinase 1 (S6K1) signaling pathway. mTOR, a highly conserved nutrient sensor, modulates INS metabolic signaling through its phosphorylation (P) of S6K1, an evolutionarily conserved serine (Ser) kinase. Evidence is mounting that chronic activation of S6K1, by excessive nutrients, promotes INS resistance in fat, liver and skeletal muscle tissue through increased Ser (P) of the critical INS signaling/docking molecule, INS receptor substrate protein 1 (IRS-1), leading to impaired phosphoinositol 3 kinase (PI3-K) engagement and protein kinase B (Akt) stimulation. Our recent work indicates that S6K1 is activated by ANG II in CV tissue leading to diminished INS metabolic signaling and biological consequences, such as impaired nitric oxide (NO)-mediated vascular relaxation. This proposal seeks to investigate novel molecular mechanisms by which ANG II and over-nutrition individually and collectively promote INS resistance in CV and skeletal muscle tissue. To evaluate the CV functional effects of INS metabolic signaling, we will utilize our state of the art rodent imaging center. In the INS resistant state, myocardial and skeletal muscle glucose uptake and metabolism is impaired, leading to diastolic dysfunction, attenuated myocardial and skeletal muscle blood flow, and impaired ischemic reconditioning. We have shown that both impaired INS stimulated glucose uptake and diastolic dysfunction are related to impaired systemic and myocardial INS metabolic signaling in models of obesity and increased tissue RAS expression. For this proposal, we will utilize novel knockout and knockdown strategies, as well as innovative rodent imaging tools, to evaluate the impact of increased S6K1 signaling (ANG II and/or excess nutrients) on myocardial function and coronary and skeletal microvascular blood flow responses to INS metabolic signaling. To address Aim 1, we will examine the relationship between ANG II and S6K1 activation and INS signaling in primary cultured endothelial cells, vascular smooth muscle cells and cardiomyocytes. Metabolic signaling results will be correlated to functional measures including NO production, cardiomyocyte glucose transport and diastolic relaxation. To further explore the collective, as well as the independent, roles of ANG II and over-nutrition on S6K1, Aim 2 will focus on in vivo/ex vivo effects in the S6K1-/- and C57BL/6 mice treated with ANG II that produces a slow pressor response and/or a high fat (60%) and high sucrose (20%) diet. A cohort of animals will be treated with an AT1R blocker (olmesartan) at a dose of 0.5 mg/kg/day, a dose determined by telemetry to have no effect on blood pressure in db/db mice. INS resistance will be assessed by hyperinsulinemic, euglycemic clamp, cardiac PET scanning, ex vivo IRS-1 (P) and INS metabolic signaling, and glucose uptake in heart and skeletal muscle. Finally, in vivo INS mediated skeletal muscle arteriolar and ex vivo coronary arteriolar, NO induced relaxation, and in vivo cardiac glucose uptake and diastolic relaxation will be related to ex vivo S6K1 activity and IRS-1 site specific Ser vs. Tyr (P) and the resultant downstream IRS-1/PI3-K/Akt signaling.

Public Health Relevance

Insulin is critical for normal cardiovascular function as well as maintaining normal blood glucose levels. Tissue resistance to the normal metabolic actions of insulin is often present in persons with hypertension and is a precursor for type 2 diabetes mellitus and cardiovascular disease. The fundamental mechanisms underlying insulin resistance in cardiovascular tissue, as well as skeletal muscle, are not well understood and our proposed work is directed at elucidation of this abnormity. A better understanding of factors involved in insulin resistance should help in the development of therapeutic targets to help prevent diabetes and cardiovascular disease.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Vascular Cell and Molecular Biology Study Section (VCMB)
Program Officer
Ershow, Abby
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Missouri-Columbia
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Jia, Guanghong; Bender, Shawn B; Sowers, James R (2016) Uncovering a Mineralocorticoid Receptor-Dependent Adipose-Vascular Axis: Implications for Vascular Dysfunction in Obesity? Diabetes 65:2127-9
Manrique, Camila; Lastra, Guido; Ramirez-Perez, Francisco I et al. (2016) Endothelial Estrogen Receptor-α Does Not Protect Against Vascular Stiffness Induced by Western Diet in Female Mice. Endocrinology 157:1590-600
Georges, George T; Nájera, O; Sowers, Kurt et al. (2016) Fibroblast Growth Factor 23 and Hypophosphatemia: A Case of Hypophosphatemia along the Rickets-Osteomalacia Spectrum. Cardiorenal Med 7:60-65
Aroor, Annayya; Zuberek, Marcin; Duta, Cornel et al. (2016) Angiotensin II Stimulation of DPP4 Activity Regulates Megalin in the Proximal Tubules. Int J Mol Sci 17:
Jia, Guanghong; Aroor, Annayya R; Sowers, James R (2016) Glucagon-Like Peptide 1 Receptor Activation and Platelet Function: Beyond Glycemic Control. Diabetes 65:1487-9
Padilla, Jaume; Ramirez-Perez, Francisco I; Habibi, Javad et al. (2016) Regular Exercise Reduces Endothelial Cortical Stiffness in Western Diet-Fed Female Mice. Hypertension 68:1236-1244
Foote, Christopher A; Castorena-Gonzalez, Jorge A; Ramirez-Perez, Francisco I et al. (2016) Arterial Stiffening in Western Diet-Fed Mice Is Associated with Increased Vascular Elastin, Transforming Growth Factor-β, and Plasma Neuraminidase. Front Physiol 7:285
Manrique, Camila; Habibi, Javad; Aroor, Annayya R et al. (2016) Dipeptidyl peptidase-4 inhibition with linagliptin prevents western diet-induced vascular abnormalities in female mice. Cardiovasc Diabetol 15:94
Jia, Guanghong; Durante, William; Sowers, James R (2016) Endothelium-Derived Hyperpolarizing Factors: A Potential Therapeutic Target for Vascular Dysfunction in Obesity and Insulin Resistance. Diabetes 65:2118-20
Jia, Guanghong; Sowers, James R (2016) Targeting CITED2 for Angiogenesis in Obesity and Insulin Resistance. Diabetes 65:3535-3536

Showing the most recent 10 out of 97 publications