The long term goal of this research proposal is to develop comprehensive accurate quantitative methods for quantitative dynamic cardiac PET that can be used in the clinical setting. Dynamic PET has long been a mainstay for research applications. However, several new PET radiopharmaceuticals require quantitative dynamic imaging with kinetic analysis to reach their clinical potential. Our work is motivated by the need to maximize the useful physiological information that can be obtained with PET while improving image quality and reducing imaging time. We envision the development of automated processing that will be transparent, transforming dynamic data to quantitative parametric maps with little operator intervention. We choose to validate our methods in cardiac imaging, given the health burden of coronary artery disease (CAD), the medical significance of quantitative cardiac PET (absolute myocardial blood flow (MBF) and coronary flow reserve (CFR)) in identifying balanced ischemia and quantifying response to treatment (e.g., CABG, PTCA), and the potential impact on CAD management of novel 18F-based flow agents. Furthermore, simultaneous dynamic rest-stress PET can reduce imaging duration while minimizing clinical artifacts associated differences between rest and stress studies in terms of patient motion, positioning, and attenuation paths. The impact of our research is not limited, however, to the heart, it extends to other applications in the brain (e.g., neuroreceptor density), cancer (e.g., tumor blood flow), etc. Many approaches to improving quantitation for dynamic PET have been proposed, but have not made it to the clinic due to the challenging noise conditions in short dynamic frames and lack of comprehensive quantitative strategies and automated software. In this proposal, we propose two approaches for absolute quantitation of MBF that operate on reconstructed frames or directly on listmode data. Next, we extend our methods to the more challenging case of simultaneous dynamic rest-stress cardiac PET to achieve joint estimation of rest and peak stress kinetic parameters and validate our methods in an acute ischemic porcine model.

Public Health Relevance

Many approaches to improving quantitation for dynamic PET have been proposed, but have not made it to the clinic due to the challenging noise conditions in short dynamic frames and lack of comprehensive quantitative strategies and automated software. In this proposal, we propose two approaches for absolute quantitation of MBF that operate on reconstructed frames or directly on listmode data. Next, we extend our methods to the more challenging case of simultaneous dynamic rest-stress cardiac PET to achieve joint estimation of rest and peak stress kinetic parameters. Finally, we validate our methods in an acute porcine ischemic animal model.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL110241-02
Application #
8324994
Study Section
Biomedical Imaging Technology Study Section (BMIT)
Program Officer
Danthi, Narasimhan
Project Start
2011-09-01
Project End
2015-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
2
Fiscal Year
2012
Total Cost
$471,412
Indirect Cost
$200,173
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Lorsakul, Auranuch; Li, Quanzheng; Trott, Cathryn M et al. (2014) 4D numerical observer for lesion detection in respiratory-gated PET. Med Phys 41:102504
Petibon, Yoann; Huang, Chuan; Ouyang, Jinsong et al. (2014) Relative role of motion and PSF compensation in whole-body oncologic PET-MR imaging. Med Phys 41:042503
Petibon, Y; El Fakhri, G; Nezafat, R et al. (2014) Towards coronary plaque imaging using simultaneous PET-MR: a simulation study. Phys Med Biol 59:1203-22
Mananga, Eugene S; El Fakhri, Georges; Schaefferkoetter, Joshua et al. (2014) Myocardial defect detection using PET-CT: phantom studies. PLoS One 9:e88200
Huang, Chuan; Altbach, Maria I; El Fakhri, Georges (2014) Pattern recognition for rapid T2 mapping with stimulated echo compensation. Magn Reson Imaging 32:969-74
Schaefferkoetter, Joshua; Ouyang, Jinsong; Rakvongthai, Yothin et al. (2014) Effect of time-of-flight and point spread function modeling on detectability of myocardial defects in PET. Med Phys 41:062502
Huang, Chuan; Ackerman, Jerome L; Petibon, Yoann et al. (2014) Motion compensation for brain PET imaging using wireless MR active markers in simultaneous PET-MR: phantom and non-human primate studies. Neuroimage 91:129-37
Huang, Chuan; Ackerman, Jerome L; Petibon, Yoann et al. (2014) MR-based motion correction for PET imaging using wired active MR microcoils in simultaneous PET-MR: phantom study. Med Phys 41:041910
Dagher, Joseph; Reese, Timothy; Bilgin, Ali (2014) High-resolution, large dynamic range field map estimation. Magn Reson Med 71:105-17
Ouyang, Jinsong; Li, Quanzheng; El Fakhri, Georges (2013) Magnetic resonance-based motion correction for positron emission tomography imaging. Semin Nucl Med 43:60-7

Showing the most recent 10 out of 17 publications