Sudden cardiac arrest (SCA) is a major public health concern, particularly among African Americans where risk of cardiac arrest is higher than that of the general population, and survival is poor. While environmental factors clearly contribute to SCA risk, familial aggregation studies and advances in the molecular genetics of inherited arrhythmias suggest that genetic factors confer susceptibility to SCA in the general population. Identifying these genetic factors will provide insight into the mechanisms of SCA and potentially help target the development of novel drug therapies. Few studies to date have examined genetic risk factors among those of African descent. We propose to systematically investigate the genetic basis of SCA risk among those of African descent, focusing on both rare and common genetic variation in candidate loci selected from biologically important molecular pathways involved in rhythmogenesis, using a targeted sequencing approach. Specifically, we will sequence approximately 100 loci among 1500 African American cases and matched controls, selected from the following sets of candidate genes: genes associated with (1) SCA among those of European descent; (2) intermediate determinants of SCA, such as cardiac conduction and repolarization as measured by the surface EKG (QRS and QT intervals); and (3) Mendelian arrhythmic syndromes that lead to SCA. Beyond establishing statistical associations, we will functionally dissect the role of the genes and variants associated with SCA. We will determine the spatial and temporal distribution of the identified transcripts across a range of developmental and post-natal stages in mice through both whole mount RNA in situ analyses and sectioning of embryonic and postnatal heart. We will use zebrafish to test the hypothesis that titration of selected gene candidates during development will compromise the genesis or function of cardiovascular components. For the identified coding variation, we will compare the capacities of human RNAs containing identified coding variation with their non-variant counterparts to rescue MO-induced effects, and will similarly assay the effects of over-expression. This application represents a multi-center collaborative effort to efficiently link advances in genomics, statistical genetics, and bioinformatics, with new and existing biologic and clinical material to identify genetic determinants of SCD among African Americans. Importantly, we will use model organisms to translate genetic associations into functional studies, to elucidate the roles played by these genes in cardiac electrophysiology and arrhythmias.

Public Health Relevance

By leveraging the populations we have assembled over the past 20 years for sudden death research with advances in molecular cardiology, sequencing technology, model organism investigations, and our collaborative group's diverse expertise, this application is well positioned to identify common and rare variants and loci associated with risk of sudden cardiac arrest (SCA) among African Americans, an understudied population that is disproportionately affected by SCA. We will then follow these findings in animal models to better understand the role that these genes and variants play in SCA pathophysiology. The identification of genetic susceptibility factors will provide insight into the mechanisms of an important and devastating disease, and perhaps identify better targets for drug development and prevention.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL111089-04
Application #
8890865
Study Section
Clinical and Integrative Cardiovascular Sciences Study Section (CICS)
Program Officer
Lathrop, David A
Project Start
2012-08-17
Project End
2017-07-31
Budget Start
2015-08-01
Budget End
2017-07-31
Support Year
4
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Washington
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Bogle, Brittany M; Sotoodehnia, Nona; Kucharska-Newton, Anna M et al. (2018) Vital exhaustion and sudden cardiac death in the Atherosclerosis Risk in Communities Study. Heart 104:423-429
Liu, C; Marioni, R E; Hedman, Å K et al. (2018) A DNA methylation biomarker of alcohol consumption. Mol Psychiatry 23:422-433
Ward-Caviness, Cavin K; Huffman, Jennifer E; Everett, Karl et al. (2018) DNA methylation age is associated with an altered hemostatic profile in a multiethnic meta-analysis. Blood 132:1842-1850
Floyd, J S; Sitlani, C M; Avery, C L et al. (2018) Large-scale pharmacogenomic study of sulfonylureas and the QT, JT and QRS intervals: CHARGE Pharmacogenomics Working Group. Pharmacogenomics J 18:127-135
Seyerle, A A; Sitlani, C M; Noordam, R et al. (2018) Pharmacogenomics study of thiazide diuretics and QT interval in multi-ethnic populations: the cohorts for heart and aging research in genomic epidemiology. Pharmacogenomics J 18:215-226
Bihlmeyer, Nathan A; Brody, Jennifer A; Smith, Albert Vernon et al. (2018) ExomeChip-Wide Analysis of 95 626 Individuals Identifies 10 Novel Loci Associated With QT and JT Intervals. Circ Genom Precis Med 11:e001758
Ashar, Foram N; Mitchell, Rebecca N; Albert, Christine M et al. (2018) A comprehensive evaluation of the genetic architecture of sudden cardiac arrest. Eur Heart J 39:3961-3969
Goh, Charlene E; Mooney, Stephen J; Siscovick, David S et al. (2018) Medical facilities in the neighborhood and incidence of sudden cardiac arrest. Resuscitation 130:118-123
Lin, Honghuang; van Setten, Jessica; Smith, Albert V et al. (2018) Common and Rare Coding Genetic Variation Underlying the Electrocardiographic PR Interval. Circ Genom Precis Med 11:e002037
Guo, Liang; Akahori, Hirokuni; Harari, Emanuel et al. (2018) CD163+ macrophages promote angiogenesis and vascular permeability accompanied by inflammation in atherosclerosis. J Clin Invest 128:1106-1124

Showing the most recent 10 out of 29 publications