The PI of this application is a physician-scientist with a career focus on developing improved care for patients with sickle cell disease (SCD). The acute chest syndrome (ACS) represents a serious, potentially fatal inflammatory lung injury syndrome occurring in patients with SCD. ACS shares many features of the inflammatory lung injury associated with acute lung injury and is the second most common cause of SCD hospitalization;is a major cause of acute and chronic SCD morbidity and mortality, is the leading cause of SCD ICU admission and premature death. There is increasing appreciation that ACS is an acute hypoxia-induced lung injury syndrome targeting the lung endothelium in response to multiple exogenous insults or triggers leading to pulmonary erythrocyte sequestration, an exaggerated inflammatory response, increased expression of adhesion molecules and impairment of pulmonary vascular function. In this highly translational proposal we will address the hypothesis that vascular-targeted genetic and genomic strategies for ACS will lead to better understanding of the pathobiology of ACS, generate novel ACS biomarkers in SCD patients and produce vascular-specific therapies for ameliorating this devastating health disparity. To address this hypothesis, in Specific Aim #1 we will identify novel single nucleotide polymorphisms that modulate ACS susceptibility and generate an ACS risk- conferring SNP panel.
Specific Aim #2 will refine and validate genome-wide, vascular-centric genomic of ACS risk in SCD patients.
In Specific Aim #3 we will interrogate the involvement of vascular permeability-regulatory pathway genes and proteins in murine ACS and ALI. Together, these highly translational approaches hold the promise to identify novel targets and biomarkers that may lead to better treatment options for patients with ACS.

Public Health Relevance

This project will investigate the role of new genetic markers as risk factors for the development of acute chest syndrome, a major cause of death in patients with sickle cell disease. We will also investigate the role of genetic markers as a tool to identif patients with acute chest syndrome.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Respiratory Integrative Biology and Translational Research Study Section (RIBT)
Program Officer
Hanspal, Manjit
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Illinois at Chicago
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Mirsaeidi, Mehdi; Machado, Roberto F; Schraufnagel, Dean et al. (2015) Racial difference in sarcoidosis mortality in the United States. Chest 147:438-49
Saraf, Santosh L; Zhang, Xu; Kanias, Tamir et al. (2014) Haemoglobinuria is associated with chronic kidney disease and its progression in patients with sickle cell anaemia. Br J Haematol 164:729-39
Chen, Jiwang; Tang, Haiyang; Sysol, Justin R et al. (2014) The sphingosine kinase 1/sphingosine-1-phosphate pathway in pulmonary arterial hypertension. Am J Respir Crit Care Med 190:1032-43
Klings, Elizabeth S; Machado, Roberto F; Barst, Robyn J et al. (2014) An official American Thoracic Society clinical practice guideline: diagnosis, risk stratification, and management of pulmonary hypertension of sickle cell disease. Am J Respir Crit Care Med 189:727-40
Zhang, Xu; Zhang, Wei; Ma, Shwu-Fan et al. (2014) Iron deficiency modifies gene expression variation induced by augmented hypoxia sensing. Blood Cells Mol Dis 52:35-45
Duarte, Julio D; Hanson, Rebekah L; Machado, Roberto F (2013) Pharmacologic treatments for pulmonary hypertension: exploring pharmacogenomics. Future Cardiol 9:335-49
Machado, Roberto F; Farber, Harrison W (2013) Pulmonary hypertension associated with chronic hemolytic anemia and other blood disorders. Clin Chest Med 34:739-52