Supplemental oxygen is frequently used in the treatment of pulmonary insufficiency in patients with acute respiratory distress syndrome (ARDS), which is a severe form of acute lung injury (ALI), affecting millions worldwide. Hyperoxic lung injury is recognized as an appropriate model for ALI/ARDS. The central hypothesis of the research proposed in this application is that specific single nucleotide polymorphisms (SNPs) in the genes for NF-E2-related factor (Nrf2) and/or NADPH quinone reductase (NQO1) contribute to ALI/ARDS by attenuating the expression of pulmonary and hepatic functional phase II anti-oxidant enzymes, leading to increased formation of oxygen-mediated reactive oxygen species (ROS), which in turn results in increased susceptibility to ALI/ARDS, as well as exacerbated lung damage in these patients. In order to achieve these goals, we propose the following Specific Aims: 1. To test the hypothesis that humans carrying specific SNPs on the Nrf2 or NQO1 genes will be more susceptible to develop ALI/ARDS than those who do not, and these individuals will display increased sensitivity to oxidative stress than those carrying the wild type genes. Endotracheal aspirates from individuals suffering from ALI/ARDS or controls will be analyzed for the presence of SNPs, F2- isoprostanes/isofurans, levels of bulky oxidative DNA adducts, and protein oxidation products. Gene expression profiles will also be studied using RNA from tracheal aspirates of these individuals. 2. To determine the mechanisms by which mice lacking the genes for Nrf2 and NQO1 are more susceptible to hyperoxic lung injury, and test the hypothesis that the cytochrome P4501A (CYP1A) inducer [e.g., ?- napthoflavone (BNF)] or omeprazole (OM) will rescue the mice lacking functional Nrf2 or NQO1 genes against hyperoxic lung injury, via novel mechanisms entailing hepatic and pulmonary CYP1A enzymes. 3. To determine the mechanisms by which known SNPs on the Nrf2 or NQO1 promoter modulate oxygen toxicity in human lung cells or in humanized mice in vivo.
This aim has two sub-aims. (i). To test the hypothesis that human lung cells carrying known SNPs of Nrf2 or NQO1 gene will be more susceptible to oxygen toxicity. (ii) To create transgenic humanized mice expressing the normal human Nrf2 gene or NQO1 gene or those carrying known SNPs on these genes, and determine the role of SNPs in hyperoxic lung injury. Omics'approaches, including genomics (microarrays) and proteomics approaches will be used to determine the molecular mechanisms by which Nrf2 or NQO1 variants contribute to lung injury. Successful accomplishment of the aims could lead to innovative strategies for the development of novel biomarkers as well as new approaches (e.g., use of PPI such as OM) for the prevention/treatment of ALI/ARDS in humans.

Public Health Relevance

This project is aimed at determining the mechanisms by which these genetic variants of NF-E2-related factor (Nrf2) and/or NADPH quinone reductase (NQO1) genes contribute to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) in humans. Successful accomplishment of the aims could lead to innovative strategies for the development of novel biomarkers as well as novel approaches for the prevention/treatment of ALI/ARDS in humans.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Xenobiotic and Nutrient Disposition and Action Study Section (XNDA)
Program Officer
Harabin, Andrea L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Baylor College of Medicine
Schools of Medicine
United States
Zip Code
Ghose, Romi; Mallick, Pankajini; Taneja, Guncha et al. (2016) In Vitro Approaches to Study Regulation of Hepatic Cytochrome P450 (CYP) 3A Expression by Paclitaxel and Rifampicin. Methods Mol Biol 1395:55-68
Dinu, Daniela; Chu, Chun; Veith, Alex et al. (2016) Mechanistic role of cytochrome P450 (CYP)1B1 in oxygen-mediated toxicity in pulmonary cells: A novel target for prevention of hyperoxic lung injury. Biochem Biophys Res Commun 476:346-51
Shah, Pranav; Omoluabi, Ozozoma; Moorthy, Bhagavatula et al. (2016) Role of Adaptor Protein Toll-Like Interleukin Domain Containing Adaptor Inducing Interferon β in Toll-Like Receptor 3- and 4-Mediated Regulation of Hepatic Drug Metabolizing Enzyme and Transporter Genes. Drug Metab Dispos 44:61-7
Patel, Ananddeep; Zhang, Shaojie; Shrestha, Amrit Kumar et al. (2016) Omeprazole induces heme oxygenase-1 in fetal human pulmonary microvascular endothelial cells via hydrogen peroxide-independent Nrf2 signaling pathway. Toxicol Appl Pharmacol 311:26-33
Lingappan, Krithika; Jiang, Weiwu; Wang, Lihua et al. (2015) Sex-specific differences in hyperoxic lung injury in mice: role of cytochrome P450 (CYP)1A. Toxicology 331:14-23
Zhang, Shaojie; Patel, Ananddeep; Moorthy, Bhagavatula et al. (2015) Adrenomedullin deficiency potentiates hyperoxic injury in fetal human pulmonary microvascular endothelial cells. Biochem Biophys Res Commun 464:1048-53
Wang, Lihua; Lingappan, Krithika; Jiang, Weiwu et al. (2015) Disruption of cytochrome P4501A2 in mice leads to increased susceptibility to hyperoxic lung injury. Free Radic Biol Med 82:147-59
Zhang, Shaojie; Patel, Ananddeep; Chu, Chun et al. (2015) Aryl hydrocarbon receptor is necessary to protect fetal human pulmonary microvascular endothelial cells against hyperoxic injury: Mechanistic roles of antioxidant enzymes and RelB. Toxicol Appl Pharmacol 286:92-101
Lingappan, Krithika; Moorthy, Bhagavatula (2015) Can maternal DHA supplementation offer long-term protection against neonatal hyperoxic lung injury? Am J Physiol Lung Cell Mol Physiol 309:L1383-6
Patel, Ananddeep; Zhang, Shaojie; Moorthy, Bhagavatula et al. (2015) Omeprazole does not Potentiate Acute Oxygen Toxicity in Fetal Human Pulmonary Microvascular Endothelial Cells Exposed to Hyperoxia. Pharm Anal Acta 6:

Showing the most recent 10 out of 25 publications