IL-33, acting via its receptor, ST2L, is a highly potent cytokine implicated in septic injury. The IL-33/ST2L axis appears indispensable in inflammatory signaling as blockade of the ST2L receptor significantly attenuates systemic inflammation. Thus, maneuvers designed to selectively modulate availability of ST2L might lessen the severity of sepsis. However, to date, very little is known regarding the molecular regulation of ST2L expression. In the process of studying bacterial sepsis, we discovered that a new orphan protein, FBXL19 (F-box protein 19, SCFFBXL19), specifically targets phosphorylated ST2L for its ubiquitination and degradation. Our published and preliminary works also shows that ST2L is phosphorylated by glycogen synthase kinase (GSK3?), and that activation of the IL-33/ST2L axis induces cleavage of PARP and PKC? thereby promoting apoptosis. Further, FBXL19 mediated disposal of ST2L attenuates IL-33/ST2L-induced pro-inflammatory signaling, apoptosis, and lessens the severity of inflammatory organ injury in septic murine models. These data led to our novel hypothesis that GSK3?-driven phosphorylation of ST2L serves as a molecular signature for F-box protein mediated ubiquitination and degradation of ST2L in sepsis-associated injury. We will test this hypothesis by executing two specific Aims: (1) To investigate the mechanisms by which GSK3? promotes ST2L degradation and regulates IL-33/ST2L signaling, and (2) To investigate the mechanisms by which FBXL19 and its ligand promotes ST2L ubiquitination and degradation thereby attenuating septic lung injury. These studies will lay the groundwork for a significant mechanistic advance with regard to the molecular regulation of a relatively new receptor (ST2L) involved in sepsis. Results from these studies are intended to serve as the basis for strategies directed at the development of novel small molecule inhibitors of the IL-33/ST2L pathway to lessen the severity of sepsis-induced organ injury.

Public Health Relevance

Acute lung injury (ALI) is a cause of respiratory failure resulting from acute pulmonary inflammation. Almost half of patients with septic shock develop ALI. These studies will identify molecular mechanisms on how a new protein, termed F-box protein FBXL19, targets a pro-inflammatory cytokine receptor to mediate its degradation. These studies will be critical in developing a novel small molecule as potential therapeutics to lessen the severity of sepsis.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Surgery, Anesthesiology and Trauma Study Section (SAT)
Program Officer
Sarkar, Rita
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Dong, Su; Zhao, Jing; Wei, Jianxin et al. (2014) F-box protein complex FBXL19 regulates TGF?1-induced E-cadherin down-regulation by mediating Rac3 ubiquitination and degradation. Mol Cancer 13:76
Zhao, Jing; Wei, Jianxin; Bowser, Rachel K et al. (2014) Molecular regulation of lysophosphatidic acid receptor 1 trafficking to the cell surface. Cell Signal 26:2406-11
Dong, Su; Khoo, Andrew; Wei, Jianxin et al. (2014) Serum starvation regulates E-cadherin upregulation via activation of c-Src in non-small-cell lung cancer A549 cells. Am J Physiol Cell Physiol 307:C893-9
Wei, Jianxin; Mialki, Rachel K; Dong, Su et al. (2013) A new mechanism of RhoA ubiquitination and degradation: roles of SCF(FBXL19) E3 ligase and Erk2. Biochim Biophys Acta 1833:2757-64
Zhao, Yutong; Zhao, Jing; Mialki, Rachel K et al. (2013) Lipopolysaccharide-induced phosphorylation of c-Met tyrosine residue 1003 regulates c-Met intracellular trafficking and lung epithelial barrier function. Am J Physiol Lung Cell Mol Physiol 305:L56-63
Zhao, Jing; Mialki, Rachel K; Wei, Jianxin et al. (2013) SCF E3 ligase F-box protein complex SCF(FBXL19) regulates cell migration by mediating Rac1 ubiquitination and degradation. FASEB J 27:2611-9
Mialki, Rachel K; Zhao, Jing; Wei, Jianxin et al. (2013) Overexpression of USP14 protease reduces I-*B protein levels and increases cytokine release in lung epithelial cells. J Biol Chem 288:15437-41